In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access ...In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy.展开更多
Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern...Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern parts of Jordan including, Ma’an, Karak and Aqaba. The available statistical data about the load of southern part of Jordan are supplied by electricity Distribution Company. Mathematical and statistical methods attempted to forecast future demand by determining trends of past results and use the trends to extrapolate the curve demand in the future.展开更多
The principle of middle and long-term earthquake forecast model of spatial and temporal synthesized probability gain and the evaluation of forecast efficiency (R-values) of various forecast methods are introduced in t...The principle of middle and long-term earthquake forecast model of spatial and temporal synthesized probability gain and the evaluation of forecast efficiency (R-values) of various forecast methods are introduced in this paper. The R-value method, developed by Xu (1989), is further developed here, and can be applied to more complicated cases. Probability gains in spatial and/or temporal domains and the R-values for different forecast methods are estimated in North China. The synthesized probability gain is then estimated as an example.展开更多
This article presents a summary of our studies of Holocene moraines and glaciers of the Tien-Shan, Pamir, and Himalaya moun- mills with the purpose of providing pattern regularity of the Holocene glaciation decomposit...This article presents a summary of our studies of Holocene moraines and glaciers of the Tien-Shan, Pamir, and Himalaya moun- mills with the purpose of providing pattern regularity of the Holocene glaciation decomposition. We developed a method for ob- taining reliable radiocarbon dating of moraines with the use of autochthonous organic matter dispersed in fine-grained morainic material, as well there were shown new possibilities of isotope-oxygen and isotope-uranium analysis for the Holocene glaciations dynamics. We found that Holocene glaciations disintegrate stadiaUy according to the decaying principle, and seven main stages may be distinguished. We achieved the absolute dating of the first three stages, identifying these periods as 8,000, 5,000, and 3,400 years ago. The application of the above-mentioned isotope methods of the Holocene glaciations and moraines study will allow re- searchers to improve the offered model of the Holocene glaciations disintegration; it will be great contribution to salvation of the problem of long-term climatic and glaciations forecast.展开更多
Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like Ch...Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like China as the growth rate of gross domestic product (GDP) is expected to be 7.5%, according to China’s 11th Five-Year Plan (2006-2010). In this paper, LTLF with an economic factor, GDP, is implemented. A support vector regression (SVR) is applied as the training algorithm to obtain the nonlinear relationship between load and the economic factor GDP to improve the accuracy of forecasting.展开更多
Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. ...Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. The objectives of the study are: 1) to estimate the relationship between wild Sea buckthorn (SB) price and Supply, Demand, while some other factors of crude oil price and exchange rate by using simultaneous Supply-Demand and Price system equation and Vector Error Correction Method (VECM);2) to forecast the short-term and long-term SB price;3) to compare and evaluate the price forecasting models. Firstly, the data was analyzed by Ferris and Engle-Granger’s procedure;secondly, both price forecasting methodologies were tested by Pindyck-Rubinfeld and Makridakis’s procedure. The result shows that the VECM model is more efficient using yearly data;a short-term price forecast decreases, and a long-term price forecast is predicted to increase the Mongolian Sea buckthorn market.展开更多
This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock p...This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock price projection. Through bibliometric analysis and systematic literature review, it is observed that 333 authors wrote on the topic between 2018 and March 2022, and the journals Expert Systems with Applications, IEEE Access, Big Data Journal and Neural Computing and Applications, published the most relevant articles. Of the 99 articles published in this period, 43 are associated with Chinese institutions, the most cited being that of Kim and Won, who studies the volatility of returns and the market capitalization of South Korean stocks. The basis of 65% of the studies is the comparison between the RNN LSTM and other artificial neural networks. The daily closing price of shares is the most analyzed type of data, and the American (21%) and Chinese (20%) stock exchanges are the most studied. 57% of the studies include improvements to existing neural network models and 42% new projection models.展开更多
The long-term energy demand in China and the-Chinese share in global CO2 emission are forecasted on the basis of scenarios of population growth and economy development up to 2050 proposed in view of the interaction of...The long-term energy demand in China and the-Chinese share in global CO2 emission are forecasted on the basis of scenarios of population growth and economy development up to 2050 proposed in view of the interaction of energy, economy, environment and social development. The total energy demand in 2050 will reach 4.4~ 5.4 billion tce. It is shown in energy supply analysis that coal is China’s major energy in primary energy supply. The share of CO2 emission in the future Chinese energy system will be out of proportion to its energy consumption share because of the high persentage of coal to be consumed. It will reach about 27%. The nuclear option which would replace 30.7% of coal in the total primary energy supply will reduce the share by 9.8%. So the policy considerations on the future Chinese energy system is of great importance to the global CO2 issues.展开更多
Using the seasonal cross-multiplication trend model, monthly precipitation of eight national basic weather stations of Shaanxi Province from 2005 to 2010 was predicted, and the forecast results were verified using the...Using the seasonal cross-multiplication trend model, monthly precipitation of eight national basic weather stations of Shaanxi Province from 2005 to 2010 was predicted, and the forecast results were verified using the rainfall scoring rules of China Meteorological Administration. The verification results show that the average score of annual precipitation prediction in recent six years is higher than that made by a professional forecaster, so this model has a good prospect of application. Moreover, the level of making prediction is steady, and it can be widely used in long-term prediction of rainfall.展开更多
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin...针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。展开更多
文摘In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy.
文摘Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern parts of Jordan including, Ma’an, Karak and Aqaba. The available statistical data about the load of southern part of Jordan are supplied by electricity Distribution Company. Mathematical and statistical methods attempted to forecast future demand by determining trends of past results and use the trends to extrapolate the curve demand in the future.
文摘The principle of middle and long-term earthquake forecast model of spatial and temporal synthesized probability gain and the evaluation of forecast efficiency (R-values) of various forecast methods are introduced in this paper. The R-value method, developed by Xu (1989), is further developed here, and can be applied to more complicated cases. Probability gains in spatial and/or temporal domains and the R-values for different forecast methods are estimated in North China. The synthesized probability gain is then estimated as an example.
基金the program of the Institute of Water Problems and Hydro Power of National Academy of Sciences of the Kyrgyz Republic
文摘This article presents a summary of our studies of Holocene moraines and glaciers of the Tien-Shan, Pamir, and Himalaya moun- mills with the purpose of providing pattern regularity of the Holocene glaciation decomposition. We developed a method for ob- taining reliable radiocarbon dating of moraines with the use of autochthonous organic matter dispersed in fine-grained morainic material, as well there were shown new possibilities of isotope-oxygen and isotope-uranium analysis for the Holocene glaciations dynamics. We found that Holocene glaciations disintegrate stadiaUy according to the decaying principle, and seven main stages may be distinguished. We achieved the absolute dating of the first three stages, identifying these periods as 8,000, 5,000, and 3,400 years ago. The application of the above-mentioned isotope methods of the Holocene glaciations and moraines study will allow re- searchers to improve the offered model of the Holocene glaciations disintegration; it will be great contribution to salvation of the problem of long-term climatic and glaciations forecast.
文摘Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like China as the growth rate of gross domestic product (GDP) is expected to be 7.5%, according to China’s 11th Five-Year Plan (2006-2010). In this paper, LTLF with an economic factor, GDP, is implemented. A support vector regression (SVR) is applied as the training algorithm to obtain the nonlinear relationship between load and the economic factor GDP to improve the accuracy of forecasting.
文摘Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. The objectives of the study are: 1) to estimate the relationship between wild Sea buckthorn (SB) price and Supply, Demand, while some other factors of crude oil price and exchange rate by using simultaneous Supply-Demand and Price system equation and Vector Error Correction Method (VECM);2) to forecast the short-term and long-term SB price;3) to compare and evaluate the price forecasting models. Firstly, the data was analyzed by Ferris and Engle-Granger’s procedure;secondly, both price forecasting methodologies were tested by Pindyck-Rubinfeld and Makridakis’s procedure. The result shows that the VECM model is more efficient using yearly data;a short-term price forecast decreases, and a long-term price forecast is predicted to increase the Mongolian Sea buckthorn market.
文摘This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock price projection. Through bibliometric analysis and systematic literature review, it is observed that 333 authors wrote on the topic between 2018 and March 2022, and the journals Expert Systems with Applications, IEEE Access, Big Data Journal and Neural Computing and Applications, published the most relevant articles. Of the 99 articles published in this period, 43 are associated with Chinese institutions, the most cited being that of Kim and Won, who studies the volatility of returns and the market capitalization of South Korean stocks. The basis of 65% of the studies is the comparison between the RNN LSTM and other artificial neural networks. The daily closing price of shares is the most analyzed type of data, and the American (21%) and Chinese (20%) stock exchanges are the most studied. 57% of the studies include improvements to existing neural network models and 42% new projection models.
文摘The long-term energy demand in China and the-Chinese share in global CO2 emission are forecasted on the basis of scenarios of population growth and economy development up to 2050 proposed in view of the interaction of energy, economy, environment and social development. The total energy demand in 2050 will reach 4.4~ 5.4 billion tce. It is shown in energy supply analysis that coal is China’s major energy in primary energy supply. The share of CO2 emission in the future Chinese energy system will be out of proportion to its energy consumption share because of the high persentage of coal to be consumed. It will reach about 27%. The nuclear option which would replace 30.7% of coal in the total primary energy supply will reduce the share by 9.8%. So the policy considerations on the future Chinese energy system is of great importance to the global CO2 issues.
基金Supported by the Major State Basic Research Development Program("973"Program)(2012CB956204)Special Project for Climate Change of China Meteorological Administration(CCSF2011-4)
文摘Using the seasonal cross-multiplication trend model, monthly precipitation of eight national basic weather stations of Shaanxi Province from 2005 to 2010 was predicted, and the forecast results were verified using the rainfall scoring rules of China Meteorological Administration. The verification results show that the average score of annual precipitation prediction in recent six years is higher than that made by a professional forecaster, so this model has a good prospect of application. Moreover, the level of making prediction is steady, and it can be widely used in long-term prediction of rainfall.
文摘针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。