Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w...Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy.展开更多
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force...A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.展开更多
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es...In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.展开更多
BACKGROUND Because of the powerful abilities of self-learning and handling complex biological information,artificial neural network(ANN)models have been widely applied to disease diagnosis,imaging analysis,and prognos...BACKGROUND Because of the powerful abilities of self-learning and handling complex biological information,artificial neural network(ANN)models have been widely applied to disease diagnosis,imaging analysis,and prognosis prediction.However,there has been no trained preoperative ANN(preope-ANN)model to preoperatively predict the prognosis of patients with gastric cancer(GC).AIM To establish a neural network model that can predict long-term survival of GC patients before surgery to evaluate the tumor condition before the operation.METHODS The clinicopathological data of 1608 GC patients treated from January 2011 to April 2015 at the Department of Gastric Surgery,Fujian Medical University Union Hospital were analyzed retrospectively.The patients were randomly divided into a training set(70%)for establishing a preope-ANN model and a testing set(30%).The prognostic evaluation ability of the preope-ANN model was compared with that of the American Joint Commission on Cancer(8th edition)clinical TNM(cTNM)and pathological TNM(pTNM)staging through the receiver operating characteristic curve,Akaike information criterion index,Harrell's C index,and likelihood ratio chi-square.RESULTS We used the variables that were statistically significant factors for the 3-year overall survival as input-layer variables to develop a preope-ANN in the training set.The survival curves within each score of the preope-ANN had good discrimination(P<0.05).Comparing the preope-ANN model,cTNM,and pTNM in both the training and testing sets,the preope-ANN model was superior to cTNM in predictive discrimination(C index),predictive homogeneity(likelihood ratio chi-square),and prediction accuracy(area under the curve).The prediction efficiency of the preope-ANN model is similar to that of pTNM.CONCLUSION The preope-ANN model can accurately predict the long-term survival of GC patients,and its predictive efficiency is not inferior to that of pTNM stage.展开更多
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu...This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes.展开更多
In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the ...In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the MFNN model for short-term climate prediction has advantages of simple structure, no hidden layer and stable network parameters because of the assembling of sound functions of the self-adaptive learning, association and fuzzy information processing of fuzzy mathematics and neural network methods. The case computational results of Guangxi flood season (JJA) rainfall show that the mean absolute error (MAE) and mean relative error (MRE) of the prediction during 1998-2002 are 68.8 mm and 9.78%, and in comparison with the regression method, under the conditions of the same predictors and period they are 97.8 mm and 12.28% respectively. Furthermore, it is also found from the stability analysis of the modular model that the change of the prediction results of independent samples with training times in the stably convergent interval of the model is less than 1.3 mm. The obvious oscillation phenomenon of prediction results with training times, such as in the common back-propagation neural network (BPNN) model, does not occur, indicating a better practical application potential of the MFNN model.展开更多
In recent years, introduction of a renewable energy source such as solar energy is expected. However, solar radiation is not constant and power output of photovoltaic (PV) system is influenced by weather conditions. I...In recent years, introduction of a renewable energy source such as solar energy is expected. However, solar radiation is not constant and power output of photovoltaic (PV) system is influenced by weather conditions. It is difficult for getting to know accurate power output of PV system. In order to forecast the power output of PV system as accurate as possible, this paper proposes a decision technique of forecasting model for short-term-ahead power output of PV system based on solar radiation prediction. Application of Recurrent Neural Network (RNN) is shown for solar radiation prediction in this paper. The proposed method in this paper does not require complicated calculation, but mathematical model with only useful weather data. The validity of the proposed RNN is confirmed by comparing simulation results of solar radiation forecasting with that obtained from other展开更多
The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process par...The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines.展开更多
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ...Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.展开更多
The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e...The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e. themultiplicative inference, the maximum inference and the minimum inference, are used for comparison. The learningalgorithms corresponding to the inference methods are derived from back-propagation algorithm. To validate the fuzzyneural network model, the network is used to Predict short-term load by compaing the network output against the realload data from a local power system supplying electricity to a large steel manufacturer. The experimental results aresatisfactory.展开更多
This paper presents a wavelet neural network (WNN) model combining wavelet transform and artificial neural networks for short term load forecast (STLF). Both historical load and temperature data having important impac...This paper presents a wavelet neural network (WNN) model combining wavelet transform and artificial neural networks for short term load forecast (STLF). Both historical load and temperature data having important impacts on load level were used in the proposed forecasting model. The model used the three-layer feed forward network trained by the error back-propagation algorithm. To enhance the forecast- ing accuracy by neural networks, wavelet multi-resolution analysis method was introduced to pre-process these data and reconstruct the predicted output. The proposed model has been evaluated with actual data of electricity load and temperature of Hunan Province. The simulation results show that the model is capable of providing a reasonable forecasting accuracy in STLF.展开更多
An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis ...An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis function (RBF) neural network method to forecast the short-term load of electric power system. To demonstrate the effectiveness of the proposed method, the method is tested on the practical load data information of the Tai power system. The good agreements between the realistic values and forecasting values are obtained;the numerical results show that the proposed forecasting method is accurate and reliable.展开更多
Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate e...Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model.展开更多
延迟是全球卫星导航定位中重要的误差源之一,提高电离层TEC建模和预报精度对改善卫星导航定位精度至关重要.本文构建了以太阳辐射通量指数F_(10.7)、地磁活动指数Dst、地理坐标和中国科学院(Chinese Academy of Sciences,CAS)GIM数据为...延迟是全球卫星导航定位中重要的误差源之一,提高电离层TEC建模和预报精度对改善卫星导航定位精度至关重要.本文构建了以太阳辐射通量指数F_(10.7)、地磁活动指数Dst、地理坐标和中国科学院(Chinese Academy of Sciences,CAS)GIM数据为输入参数的NeuralProphet神经网络模型(NP模型),实现在2015年3月特大磁暴期中国区域电离层TEC短期预报.为验证NP模型的预报精度,本文同时构建了长短期记忆神经网络(Long Short-term Memory Neural Network,LSTM)模型进行对比分析.结果统计分析表明,NP模型在磁暴期(2015年DOY076-078)TEC预报值RMSE和RD分别为0.83 TECU和3.13%,绝对和相对精度较LSTM模型分别提高1.49 TECU和10.25%;且NP模型RMSE优于1.5 TECU的比例达97.24%,远高于LSTM模型.NP模型预报值与CAS具有较好一致性和无偏性,偏差均值仅为-0.01 TECU,而LSTM模型预报值的均值偏大,偏差均值为1.49 TECU.从低纬到中纬度的三个纬度带内,NP模型RMSE分别为1.12、0.83和0.44 TECU,精度比LSTM模型提高1.94、1.56和1.23 TECU.整体上,在磁暴期NP模型预报性能明显优于LSTM模型,能够精细描述中国区域电离层TEC时空变化.展开更多
Currently,Bitcoin is the world’s most popular cryptocurrency.The price of Bitcoin is extremely volatile,which can be described as high-benefit and high-risk.To minimize the risk involved,a means of more accurately pr...Currently,Bitcoin is the world’s most popular cryptocurrency.The price of Bitcoin is extremely volatile,which can be described as high-benefit and high-risk.To minimize the risk involved,a means of more accurately predicting the Bitcoin price is required.Most of the existing studies of Bitcoin prediction are based on historical(i.e.,benchmark)data,without considering the real-time(i.e.,live)data.To mitigate the issue of price volatility and achieve more precise outcomes,this study suggests using historical and real-time data to predict the Bitcoin candlestick—or open,high,low,and close(OHLC)—prices.Seeking a better prediction model,the present study proposes time series-based deep learning models.In particular,two deep learning algorithms were applied,namely,long short-term memory(LSTM)and gated recurrent unit(GRU).Using real-time data,the Bitcoin candlesticks were predicted for three intervals:the next 4 h,the next 12 h,and the next 24 h.The results showed that the best-performing model was the LSTM-based model with the 4-h interval.In particular,this model achieved a stellar performance with a mean absolute percentage error(MAPE)of 0.63,a root mean square error(RMSE)of 0.0009,a mean square error(MSE)of 9e-07,a mean absolute error(MAE)of 0.0005,and an R-squared coefficient(R2)of 0.994.With these results,the proposed prediction model has demonstrated its efficiency over the models proposed in previous studies.The findings of this study have considerable implications in the business field,as the proposed model can assist investors and traders in precisely identifying Bitcoin sales and buying opportunities.展开更多
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits...In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.展开更多
Short-term load forecasting is a basis of power system dispatching and operation. In order to improve the short term power load precision, a novel approach for short-term load forecasting is presented based on local m...Short-term load forecasting is a basis of power system dispatching and operation. In order to improve the short term power load precision, a novel approach for short-term load forecasting is presented based on local mean decomposition (LMD) and the radial basis function neural network method (RBFNN). Firstly, the decomposition of LMD method based on characteristics of load data then the decomposed data are respectively predicted by using the RBF network model and predicted by using the BBO-RBF network model. The simulation results show that the RBF network model optimized by using BBO algorithm is optimized in error performance index, and the prediction accuracy is higher and more effective.展开更多
Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of...Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach.展开更多
基金support of national natural science foundation of China(No.52067021)natural science foundation of Xinjiang(2022D01C35)+1 种基金excellent youth scientific and technological talents plan of Xinjiang(No.2019Q012)major science&technology special project of Xinjiang Uygur Autonomous Region(2022A01002-2)。
文摘Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy.
基金supported by the Ministry of Trade,Industry & Energy(MOTIE,Korea) under Industrial Technology Innovation Program (No.10063424,'development of distant speech recognition and multi-task dialog processing technologies for in-door conversational robots')
文摘A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.
文摘In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.
基金the Scientific and Technological Innovation JointCapital Projects of Fujian Province,No.2016Y9031the Construction Project of Fujian Province Minimally Invasive Medical Center,No.[2017]171+4 种基金the General Project of Miaopu Scientific Research Fund of Fujian Medical University,No.2015MP021the Youth Project of Fujian Provincial Health and Family Planning Commission,No.2016-1-41the Fujian Province Medical Innovation ProjectChinese Physicians Association Young Physician Respiratory Research Fund,No.2015-CXB-16the Fujian Science and Technology Innovation Joint Fund Project,No.2017Y9004
文摘BACKGROUND Because of the powerful abilities of self-learning and handling complex biological information,artificial neural network(ANN)models have been widely applied to disease diagnosis,imaging analysis,and prognosis prediction.However,there has been no trained preoperative ANN(preope-ANN)model to preoperatively predict the prognosis of patients with gastric cancer(GC).AIM To establish a neural network model that can predict long-term survival of GC patients before surgery to evaluate the tumor condition before the operation.METHODS The clinicopathological data of 1608 GC patients treated from January 2011 to April 2015 at the Department of Gastric Surgery,Fujian Medical University Union Hospital were analyzed retrospectively.The patients were randomly divided into a training set(70%)for establishing a preope-ANN model and a testing set(30%).The prognostic evaluation ability of the preope-ANN model was compared with that of the American Joint Commission on Cancer(8th edition)clinical TNM(cTNM)and pathological TNM(pTNM)staging through the receiver operating characteristic curve,Akaike information criterion index,Harrell's C index,and likelihood ratio chi-square.RESULTS We used the variables that were statistically significant factors for the 3-year overall survival as input-layer variables to develop a preope-ANN in the training set.The survival curves within each score of the preope-ANN had good discrimination(P<0.05).Comparing the preope-ANN model,cTNM,and pTNM in both the training and testing sets,the preope-ANN model was superior to cTNM in predictive discrimination(C index),predictive homogeneity(likelihood ratio chi-square),and prediction accuracy(area under the curve).The prediction efficiency of the preope-ANN model is similar to that of pTNM.CONCLUSION The preope-ANN model can accurately predict the long-term survival of GC patients,and its predictive efficiency is not inferior to that of pTNM stage.
文摘This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes.
基金This reasearch was supported by the Science Foundation of Guangxi under grant No.0339025the Natural Sciences Foundation of China under grant No.40075021.
文摘In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the MFNN model for short-term climate prediction has advantages of simple structure, no hidden layer and stable network parameters because of the assembling of sound functions of the self-adaptive learning, association and fuzzy information processing of fuzzy mathematics and neural network methods. The case computational results of Guangxi flood season (JJA) rainfall show that the mean absolute error (MAE) and mean relative error (MRE) of the prediction during 1998-2002 are 68.8 mm and 9.78%, and in comparison with the regression method, under the conditions of the same predictors and period they are 97.8 mm and 12.28% respectively. Furthermore, it is also found from the stability analysis of the modular model that the change of the prediction results of independent samples with training times in the stably convergent interval of the model is less than 1.3 mm. The obvious oscillation phenomenon of prediction results with training times, such as in the common back-propagation neural network (BPNN) model, does not occur, indicating a better practical application potential of the MFNN model.
文摘In recent years, introduction of a renewable energy source such as solar energy is expected. However, solar radiation is not constant and power output of photovoltaic (PV) system is influenced by weather conditions. It is difficult for getting to know accurate power output of PV system. In order to forecast the power output of PV system as accurate as possible, this paper proposes a decision technique of forecasting model for short-term-ahead power output of PV system based on solar radiation prediction. Application of Recurrent Neural Network (RNN) is shown for solar radiation prediction in this paper. The proposed method in this paper does not require complicated calculation, but mathematical model with only useful weather data. The validity of the proposed RNN is confirmed by comparing simulation results of solar radiation forecasting with that obtained from other
基金funded by Fujian Science and Technology Key Project(No.2016H6022,2018J01099,2017H0037)
文摘The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines.
基金the Gansu Province Soft Scientific Research Projects(No.2015GS06516)the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China(No.J201304)。
文摘Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.
文摘The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e. themultiplicative inference, the maximum inference and the minimum inference, are used for comparison. The learningalgorithms corresponding to the inference methods are derived from back-propagation algorithm. To validate the fuzzyneural network model, the network is used to Predict short-term load by compaing the network output against the realload data from a local power system supplying electricity to a large steel manufacturer. The experimental results aresatisfactory.
文摘This paper presents a wavelet neural network (WNN) model combining wavelet transform and artificial neural networks for short term load forecast (STLF). Both historical load and temperature data having important impacts on load level were used in the proposed forecasting model. The model used the three-layer feed forward network trained by the error back-propagation algorithm. To enhance the forecast- ing accuracy by neural networks, wavelet multi-resolution analysis method was introduced to pre-process these data and reconstruct the predicted output. The proposed model has been evaluated with actual data of electricity load and temperature of Hunan Province. The simulation results show that the model is capable of providing a reasonable forecasting accuracy in STLF.
文摘An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis function (RBF) neural network method to forecast the short-term load of electric power system. To demonstrate the effectiveness of the proposed method, the method is tested on the practical load data information of the Tai power system. The good agreements between the realistic values and forecasting values are obtained;the numerical results show that the proposed forecasting method is accurate and reliable.
文摘Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model.
文摘Currently,Bitcoin is the world’s most popular cryptocurrency.The price of Bitcoin is extremely volatile,which can be described as high-benefit and high-risk.To minimize the risk involved,a means of more accurately predicting the Bitcoin price is required.Most of the existing studies of Bitcoin prediction are based on historical(i.e.,benchmark)data,without considering the real-time(i.e.,live)data.To mitigate the issue of price volatility and achieve more precise outcomes,this study suggests using historical and real-time data to predict the Bitcoin candlestick—or open,high,low,and close(OHLC)—prices.Seeking a better prediction model,the present study proposes time series-based deep learning models.In particular,two deep learning algorithms were applied,namely,long short-term memory(LSTM)and gated recurrent unit(GRU).Using real-time data,the Bitcoin candlesticks were predicted for three intervals:the next 4 h,the next 12 h,and the next 24 h.The results showed that the best-performing model was the LSTM-based model with the 4-h interval.In particular,this model achieved a stellar performance with a mean absolute percentage error(MAPE)of 0.63,a root mean square error(RMSE)of 0.0009,a mean square error(MSE)of 9e-07,a mean absolute error(MAE)of 0.0005,and an R-squared coefficient(R2)of 0.994.With these results,the proposed prediction model has demonstrated its efficiency over the models proposed in previous studies.The findings of this study have considerable implications in the business field,as the proposed model can assist investors and traders in precisely identifying Bitcoin sales and buying opportunities.
基金supported by a State Grid Zhejiang Electric Power Co.,Ltd.Economic and Technical Research Institute Project(Key Technologies and Empirical Research of Diversified Integrated Operation of User-Side Energy Storage in Power Market Environment,No.5211JY19000W)supported by the National Natural Science Foundation of China(Research on Power Market Management to Promote Large-Scale New Energy Consumption,No.71804045).
文摘In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.
文摘Short-term load forecasting is a basis of power system dispatching and operation. In order to improve the short term power load precision, a novel approach for short-term load forecasting is presented based on local mean decomposition (LMD) and the radial basis function neural network method (RBFNN). Firstly, the decomposition of LMD method based on characteristics of load data then the decomposed data are respectively predicted by using the RBF network model and predicted by using the BBO-RBF network model. The simulation results show that the RBF network model optimized by using BBO algorithm is optimized in error performance index, and the prediction accuracy is higher and more effective.
基金supported by two Ministry of Education(MoE)Singapore Tier 1 research grants under grant numbers R-296-000-208-133 and R-296-000-241-114.
文摘Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach.