In this paper, the process of medium- and short-term prediction (submitted in special cards) of the Artux earthquake (MS=6.9) and the Usurian earthquake (MS=5.8) in Xinjiang area, is introduced. The imminent seismic r...In this paper, the process of medium- and short-term prediction (submitted in special cards) of the Artux earthquake (MS=6.9) and the Usurian earthquake (MS=5.8) in Xinjiang area, is introduced. The imminent seismic risk regions are judged based on long- and medium-term seismic risk regions and annual seismic risk regions determined by national seismologic analysis, combined with large seismic situation analysis. We trace and analyze the seismic situation in large areas, and judge principal risk regions or belts of seismic activity in a year, by integrating the large area’s seismicity with geodetic deformation evolutional characteristics. As much as possible using information, we study synthetically observational information for long-medium- and short-term (time domain) and large-medium -small dimensions (space domain), and approach the forecast region of forthcoming earthquakes from the large to small magnitude. A better effect has been obtained. Some questions about earthquake prediction are discussed.展开更多
Based on the observations of many years, it has been found that “small earthquake modulation windows” exist inthe situation of some special geological structures, which respond sensitively to the variations of regio...Based on the observations of many years, it has been found that “small earthquake modulation windows” exist inthe situation of some special geological structures, which respond sensitively to the variations of regional stressfields and the activities of earthquake swarms greater than moderate strong magnitude, and can supply some precursory information. More than two “small earthquake modulation windows” can also provide a general orientation of the first main earthquake of a earthquake cluster. Compared with “seismic window” based on frequency itis no doubt that the “modulation-window” has an unique characteristic of applicational significance to mediumterm earthquake prediction with a time scale of two or three years.展开更多
Bed on the analysis of each parameter describing seismicity,we think A(b)-value can betterquantitatively describe the feature of the enhancement and quietness of seismicity in this paper. Thedata of moderate or small ...Bed on the analysis of each parameter describing seismicity,we think A(b)-value can betterquantitatively describe the feature of the enhancement and quietness of seismicity in this paper. Thedata of moderate or small earthquakes during 1972~1996 in North China are used in space scanningof A(b)-value. The result shows that 2~3 years before most strong earthquakes there wereObviously anomaly zones of A(b)-value with very good prediction effect. Some problems about themedium-term prediction by using A(b)-value are also discussed.展开更多
Earthquake activities in history are characterized by active and quiet periods. In the quiet period, the place where earthquake M_≥6 occurred means more elastic energy store and speedy energy accumulation there. When...Earthquake activities in history are characterized by active and quiet periods. In the quiet period, the place where earthquake M_≥6 occurred means more elastic energy store and speedy energy accumulation there. When an active period of big earthquake activity appeared in wide region, in the place where earthquake (M_≥6) occurred in the past quiet period, the big earthquake with magnitude of 7 or more often occur there. We call the above-mentioned judgement for predicting big earthquake the 'criterion of activity in quiescence'. The criterion is relatively effective for predicting location of big earthquake. In general, error of predicting epicenter is no more than 100 km. According to the criterion, we made successfully a middle-term prediction on the 1996 Lijiang earthquake in Yunnan Province, the error of predicted location is about 50 km. Besides, the 1994 Taiwan strait earthquake (M_s=7.3), the 1995 Yunnan-Myanmar boundary earthquake (M_s=7.2) and the Mani earthquake (M_s=7.9) in north Tibet are accordant with the retrospective predictions by the 'criterion of activity in quiescence'. The windows of 'activity in quiescence' identified statistically by us are 1940-1945, 1958-1961 and 1979-1986. Using the 'criterion of activity in quiescence' to predict big earthquake in the mainland of China,the earthquake defined by 'activity in quiescence' has magnitude of 6 or more; For the Himalayas seismic belt, the Pacific seismic belt and the north-west boundary seismic belt of Xinjiang, the earthquake defined by 'activity in quiescence' has magnitude of 7, which is corresponding to earthquake with magnitude of much more than 7 in future. For the regions where there are not tectonically and historically a possibility of occurring big earthquake (M_s=7), the criterion of activity in quiescence is not effective.展开更多
This paper introduces relative and absolute gravity change observations in the eastern portion of the Tibetan Plateau. We analyze and discuss a change that occurred in 2010 in the gravity along the eastern margin of t...This paper introduces relative and absolute gravity change observations in the eastern portion of the Tibetan Plateau. We analyze and discuss a change that occurred in 2010 in the gravity along the eastern margin of the plateau and the relationship between this change and the 2013 Lushan Ms7.0 earthquake. Our results show that: (1) before the Lushan MsT.0 earthquake, gravity anomalies along the eastern margin of the Tibetan Plateau changed drastically. The Lushan earthquake occurred at the bend of the high gradient zone of gravity var- iation along the southern edge of the Longmenshan fault zone. (2) The 2013 Lushan earthquake occurred less than 100 km away from the epicenter of the 2008 Wenchuan earthquake. Lushan and Wenchuan are located at the center of a four- quadrant section with different gravity anomalies, which may suggest that restoration after the Wenchuan earthquake may have played a role in causing the Lushan earthquake. (3) A medium-term prediction based on changes in gravity anoma- lies was made before the Lushan Ms7.0 earthquake, in par- ticular, a prediction of epicenter location.展开更多
In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution o...In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of ML2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is pro-posed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.展开更多
In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution o...In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of ML2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is pro-posed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.展开更多
The relation between plate tectonics and earthquake evolution is analyzed systematically on the basis of 1998-2010 absolute and relative gravity data from the Crustal Movement Observation Network of China. Most earthq...The relation between plate tectonics and earthquake evolution is analyzed systematically on the basis of 1998-2010 absolute and relative gravity data from the Crustal Movement Observation Network of China. Most earthquakes originated in the plate boundary or within the fault zone. Tectonic deformation was most intense and exhibited discontinuity within the tectonically active fault zone because of the differential movement; the stress accumulation produced an abrupt gravity change, which was further enhanced by the earthquake. The gravity data from China's Mainland since 2000 obviously reflected five major earthquakes (Ms 〉 7), all of which were better reflected than before 2000. Regional gravity anomalies and a gravity gradient change were observed in the area around the epicenter about 2 or 3 years before the earthquake occurred, suggesting that gravity change may be a seismic precursor. Furthermore, in this study, the medium-term predictions of the Ms7.3 Yutian, Ms8.0 Wenchuan, and Ms7.0 Lushan earthquakes are analytically pre- sented and evaluated, especially to estimate location of earthquake.展开更多
In this paper, the focus depth distribution of earthquakes with each magnitude has been analyzed. Statistic data show that the lower magnitude is, the wider focus depth distributes. With larger magnitude, the focus te...In this paper, the focus depth distribution of earthquakes with each magnitude has been analyzed. Statistic data show that the lower magnitude is, the wider focus depth distributes. With larger magnitude, the focus tends to be concentrated in upper or middle crustal layers. We analyzed the cause of focus depth distribution and explained the precursor mechanism of small and moderate earthquakes with occurring condition and characteristics of strong earthquakes. The results of this paper may be applied to determine risk sites of strong earthquakes.展开更多
The New Seismic Zoning Map of China was prepared from 1987 to 1990 and officially promulgated in 1991.In comparison with the previous two seismic zoning maps prepared in 1957 and 1977,some new methods were applied to ...The New Seismic Zoning Map of China was prepared from 1987 to 1990 and officially promulgated in 1991.In comparison with the previous two seismic zoning maps prepared in 1957 and 1977,some new methods were applied to upgrade the method currently used for seismic hazard analysis.First,a probabilistic method was used instead of the deterministic analysis was used for previous mapping.Second,by taking advantages of the long history of historical seismic data in China,the nonhomogeneity of seismicity both in space and in time has been fully considered and hence the over-and/or underestimation of seismic hazard could be avoided.Third,the results of middle-and long-term earthquake prediction based on tectonic evidence have been incorporated into seismic hazard analysis.In addition,the attenuation laws for both intensity and peak acceleration of strong motion as the mapping parameters are also presented.Finally,an evaluation of the New Seismic Map and its effect on engineering application,such as aseismic展开更多
Making use of the method of obtaining regional vertical strain rate from regional preciseleveling data and gaining dynamic pattern combining with deformation data on spanningfaults, the regional vertical strain dynami...Making use of the method of obtaining regional vertical strain rate from regional preciseleveling data and gaining dynamic pattern combining with deformation data on spanningfaults, the regional vertical strain dynamic evolution characteristics of several moderatelystrong earthquakes such as Lijiang (M_s 7.0) and Menyuan (M_s 6.4) earthquakes occurredin crustal deformation monitoring areas located in the western Yunnan and Qilianshan-Hexiregion. Based on the above-mentioned facts, by studying the time-space nonhomogeneity andstrain energy accumulation status, some criteria for judging the medium. and short-termstrong seismic risk regions according to the regional vertical strain rate dynamic informationare proposed.展开更多
文摘In this paper, the process of medium- and short-term prediction (submitted in special cards) of the Artux earthquake (MS=6.9) and the Usurian earthquake (MS=5.8) in Xinjiang area, is introduced. The imminent seismic risk regions are judged based on long- and medium-term seismic risk regions and annual seismic risk regions determined by national seismologic analysis, combined with large seismic situation analysis. We trace and analyze the seismic situation in large areas, and judge principal risk regions or belts of seismic activity in a year, by integrating the large area’s seismicity with geodetic deformation evolutional characteristics. As much as possible using information, we study synthetically observational information for long-medium- and short-term (time domain) and large-medium -small dimensions (space domain), and approach the forecast region of forthcoming earthquakes from the large to small magnitude. A better effect has been obtained. Some questions about earthquake prediction are discussed.
文摘Based on the observations of many years, it has been found that “small earthquake modulation windows” exist inthe situation of some special geological structures, which respond sensitively to the variations of regional stressfields and the activities of earthquake swarms greater than moderate strong magnitude, and can supply some precursory information. More than two “small earthquake modulation windows” can also provide a general orientation of the first main earthquake of a earthquake cluster. Compared with “seismic window” based on frequency itis no doubt that the “modulation-window” has an unique characteristic of applicational significance to mediumterm earthquake prediction with a time scale of two or three years.
基金This project was sponsored by China Seismological Bureau(95-04),China
文摘Bed on the analysis of each parameter describing seismicity,we think A(b)-value can betterquantitatively describe the feature of the enhancement and quietness of seismicity in this paper. Thedata of moderate or small earthquakes during 1972~1996 in North China are used in space scanningof A(b)-value. The result shows that 2~3 years before most strong earthquakes there wereObviously anomaly zones of A(b)-value with very good prediction effect. Some problems about themedium-term prediction by using A(b)-value are also discussed.
基金State Natural Science Foundation of China!(49674210).
文摘Earthquake activities in history are characterized by active and quiet periods. In the quiet period, the place where earthquake M_≥6 occurred means more elastic energy store and speedy energy accumulation there. When an active period of big earthquake activity appeared in wide region, in the place where earthquake (M_≥6) occurred in the past quiet period, the big earthquake with magnitude of 7 or more often occur there. We call the above-mentioned judgement for predicting big earthquake the 'criterion of activity in quiescence'. The criterion is relatively effective for predicting location of big earthquake. In general, error of predicting epicenter is no more than 100 km. According to the criterion, we made successfully a middle-term prediction on the 1996 Lijiang earthquake in Yunnan Province, the error of predicted location is about 50 km. Besides, the 1994 Taiwan strait earthquake (M_s=7.3), the 1995 Yunnan-Myanmar boundary earthquake (M_s=7.2) and the Mani earthquake (M_s=7.9) in north Tibet are accordant with the retrospective predictions by the 'criterion of activity in quiescence'. The windows of 'activity in quiescence' identified statistically by us are 1940-1945, 1958-1961 and 1979-1986. Using the 'criterion of activity in quiescence' to predict big earthquake in the mainland of China,the earthquake defined by 'activity in quiescence' has magnitude of 6 or more; For the Himalayas seismic belt, the Pacific seismic belt and the north-west boundary seismic belt of Xinjiang, the earthquake defined by 'activity in quiescence' has magnitude of 7, which is corresponding to earthquake with magnitude of much more than 7 in future. For the regions where there are not tectonically and historically a possibility of occurring big earthquake (M_s=7), the criterion of activity in quiescence is not effective.
基金supported by the National Natural Science Foundation of China(41274083)Special Earthquake Research Project Grant by China Earthquake Administration(201208009)
文摘This paper introduces relative and absolute gravity change observations in the eastern portion of the Tibetan Plateau. We analyze and discuss a change that occurred in 2010 in the gravity along the eastern margin of the plateau and the relationship between this change and the 2013 Lushan Ms7.0 earthquake. Our results show that: (1) before the Lushan MsT.0 earthquake, gravity anomalies along the eastern margin of the Tibetan Plateau changed drastically. The Lushan earthquake occurred at the bend of the high gradient zone of gravity var- iation along the southern edge of the Longmenshan fault zone. (2) The 2013 Lushan earthquake occurred less than 100 km away from the epicenter of the 2008 Wenchuan earthquake. Lushan and Wenchuan are located at the center of a four- quadrant section with different gravity anomalies, which may suggest that restoration after the Wenchuan earthquake may have played a role in causing the Lushan earthquake. (3) A medium-term prediction based on changes in gravity anoma- lies was made before the Lushan Ms7.0 earthquake, in par- ticular, a prediction of epicenter location.
基金Key Science Research Project (100501-05-09) from China Earthquake Administration during the tenth Five-year Plan.
文摘In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of ML2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is pro-posed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.
文摘In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of ML2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is pro-posed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.
基金jointly funded by the Shanxi Science and Technology Plan Projects(2014K13-04)the Special Earthquake Research Project Grant offered by the China Earthquake Administration(201508009)the Crustal Movement Observation Network of China
文摘The relation between plate tectonics and earthquake evolution is analyzed systematically on the basis of 1998-2010 absolute and relative gravity data from the Crustal Movement Observation Network of China. Most earthquakes originated in the plate boundary or within the fault zone. Tectonic deformation was most intense and exhibited discontinuity within the tectonically active fault zone because of the differential movement; the stress accumulation produced an abrupt gravity change, which was further enhanced by the earthquake. The gravity data from China's Mainland since 2000 obviously reflected five major earthquakes (Ms 〉 7), all of which were better reflected than before 2000. Regional gravity anomalies and a gravity gradient change were observed in the area around the epicenter about 2 or 3 years before the earthquake occurred, suggesting that gravity change may be a seismic precursor. Furthermore, in this study, the medium-term predictions of the Ms7.3 Yutian, Ms8.0 Wenchuan, and Ms7.0 Lushan earthquakes are analytically pre- sented and evaluated, especially to estimate location of earthquake.
文摘In this paper, the focus depth distribution of earthquakes with each magnitude has been analyzed. Statistic data show that the lower magnitude is, the wider focus depth distributes. With larger magnitude, the focus tends to be concentrated in upper or middle crustal layers. We analyzed the cause of focus depth distribution and explained the precursor mechanism of small and moderate earthquakes with occurring condition and characteristics of strong earthquakes. The results of this paper may be applied to determine risk sites of strong earthquakes.
文摘The New Seismic Zoning Map of China was prepared from 1987 to 1990 and officially promulgated in 1991.In comparison with the previous two seismic zoning maps prepared in 1957 and 1977,some new methods were applied to upgrade the method currently used for seismic hazard analysis.First,a probabilistic method was used instead of the deterministic analysis was used for previous mapping.Second,by taking advantages of the long history of historical seismic data in China,the nonhomogeneity of seismicity both in space and in time has been fully considered and hence the over-and/or underestimation of seismic hazard could be avoided.Third,the results of middle-and long-term earthquake prediction based on tectonic evidence have been incorporated into seismic hazard analysis.In addition,the attenuation laws for both intensity and peak acceleration of strong motion as the mapping parameters are also presented.Finally,an evaluation of the New Seismic Map and its effect on engineering application,such as aseismic
基金This research was sponsored by the National Key Basic Research Project (G1998040703) and China Seismological Burear (95-04-04-01-01).
文摘Making use of the method of obtaining regional vertical strain rate from regional preciseleveling data and gaining dynamic pattern combining with deformation data on spanningfaults, the regional vertical strain dynamic evolution characteristics of several moderatelystrong earthquakes such as Lijiang (M_s 7.0) and Menyuan (M_s 6.4) earthquakes occurredin crustal deformation monitoring areas located in the western Yunnan and Qilianshan-Hexiregion. Based on the above-mentioned facts, by studying the time-space nonhomogeneity andstrain energy accumulation status, some criteria for judging the medium. and short-termstrong seismic risk regions according to the regional vertical strain rate dynamic informationare proposed.