期刊文献+
共找到3,522篇文章
< 1 2 177 >
每页显示 20 50 100
Binaural Speech Separation Algorithm Based on Long and Short Time Memory Networks 被引量:1
1
作者 Lin Zhou Siyuan Lu +3 位作者 Qiuyue Zhong Ying Chen Yibin Tang Yan Zhou 《Computers, Materials & Continua》 SCIE EI 2020年第6期1373-1386,共14页
Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial featur... Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial features among the consecutive speech frames become highly correlated such that it is helpful for speaker separation by providing additional spatial information.To fully exploit this information,we design a separation system on Recurrent Neural Network(RNN)with long short-term memory(LSTM)which effectively learns the temporal dynamics of spatial features.In detail,a LSTM-based speaker separation algorithm is proposed to extract the spatial features in each time-frequency(TF)unit and form the corresponding feature vector.Then,we treat speaker separation as a supervised learning problem,where a modified ideal ratio mask(IRM)is defined as the training function during LSTM learning.Simulations show that the proposed system achieves attractive separation performance in noisy and reverberant environments.Specifically,during the untrained acoustic test with limited priors,e.g.,unmatched signal to noise ratio(SNR)and reverberation,the proposed LSTM based algorithm can still outperforms the existing DNN based method in the measures of PESQ and STOI.It indicates our method is more robust in untrained conditions. 展开更多
关键词 Binaural speech separation long and short time memory networks feature vectors ideal ratio mask
下载PDF
Conditional Random Field Tracking Model Based on a Visual Long Short Term Memory Network 被引量:2
2
作者 Pei-Xin Liu Zhao-Sheng Zhu +1 位作者 Xiao-Feng Ye Xiao-Feng Li 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期308-319,共12页
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es... In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation. 展开更多
关键词 Conditional random field(CRF) long short term memory network(LSTM) motion estimation multiple object tracking(MOT)
下载PDF
Short-Term Relay Quality Prediction Algorithm Based on Long and Short-Term Memory 被引量:3
3
作者 XUE Wendong CHAI Yuan +2 位作者 LI Qigan HONG Yongqiang ZHENG Gaofeng 《Instrumentation》 2018年第4期46-54,共9页
The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process par... The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines. 展开更多
关键词 RELAY Production LINE long and short-TERM memory network Keras DEEP Learning Framework Quality Prediction
下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:7
4
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus long short-TERM memory recurrentneural network
下载PDF
State of Health Estimation of Lithium-Ion Batteries Using Support Vector Regression and Long Short-Term Memory
5
作者 Inioluwa Obisakin Chikodinaka Vanessa Ekeanyanwu 《Open Journal of Applied Sciences》 CAS 2022年第8期1366-1382,共17页
Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate e... Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model. 展开更多
关键词 Support Vector Regression (SVR) long short-Term memory (LSTM) network State of Health (SOH) Estimation
下载PDF
Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks
6
作者 Tiantian Liang Runze Wang +2 位作者 Xuxiu Zhang Yingdong Wang Jianxiong Yang 《Structural Durability & Health Monitoring》 EI 2023年第5期433-455,共23页
In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-do... In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing.To provide covariates for reliability assessment,a kernel principal component analysis is used to reduce the dimensionality of the features.A Weibull distribution proportional hazard model(WPHM)is used for the reliability assessment of rolling bearing,and a beluga whale optimization(BWO)algorithm is combined with maximum likelihood estimation(MLE)to improve the estimation accuracy of the model parameters of the WPHM,which provides the data basis for predicting reliability.Considering the possible gradient explosion by training the rolling bearing lifetime data and the difficulties in selecting the key network parameters,an optimized LSTM network called the improved whale optimization algorithm-based long short-term memory(IWOA-LSTM)network is proposed.As IWOA better jumps out of the local optimization,the fitting and prediction accuracies of the network are correspondingly improved.The experimental results show that compared with the whale optimization algorithm-based long short-term memory(WOA-LSTM)network,the reliability prediction and RUL prediction accuracies of the rolling bearing are improved by the proposed IWOA-LSTM network. 展开更多
关键词 Rolling bearing prediction feature extraction long short-term memory network improve whale optimization algorithm
下载PDF
Short-TermWind Power Prediction Based on Combinatorial Neural Networks
7
作者 Tusongjiang Kari Sun Guoliang +2 位作者 Lei Kesong Ma Xiaojing Wu Xian 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1437-1452,共16页
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w... Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy. 展开更多
关键词 Wind power prediction wavelet transform back propagation neural network bi-directional long short term memory
下载PDF
Wind Speed Short-Term Prediction Based on Empirical Wavelet Transform, Recurrent Neural Network and Error Correction
8
作者 朱昶胜 朱丽娜 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期297-308,共12页
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ... Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction. 展开更多
关键词 wind speed prediction empirical wavelet transform deep long short term memory network Elman neural network error correction strategy
原文传递
Chiller faults detection and diagnosis with sensor network and adaptive 1D CNN 被引量:2
9
作者 Ke Yan Xiaokang Zhou 《Digital Communications and Networks》 SCIE CSCD 2022年第4期531-539,共9页
Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of... Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach. 展开更多
关键词 CHILLER Fault detection and diagnosis Deep learning neural network long short term memory Recurrent neural network Gated recurrent unit
下载PDF
A Self-Organizing Memory Neural Network for Aerosol Concentration Prediction
10
作者 Qiang Liu Yanyun Zou Xiaodong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第6期617-637,共21页
Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5... Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best. 展开更多
关键词 Haze-fog PM2.5 forecasting time series data machine learning long shortterm memory NEURAL network SELF-ORGANIZING algorithm information processing CAPABILITY
下载PDF
Bitcoin Candlestick Prediction with Deep Neural Networks Based on Real Time Data
11
作者 Reem K.Alkhodhairi Shahad R.Aljalhami +3 位作者 Norah K.Rusayni Jowharah F.Alshobaili Amal A.Al-Shargabi Abdulatif Alabdulatif 《Computers, Materials & Continua》 SCIE EI 2021年第9期3215-3233,共19页
Currently,Bitcoin is the world’s most popular cryptocurrency.The price of Bitcoin is extremely volatile,which can be described as high-benefit and high-risk.To minimize the risk involved,a means of more accurately pr... Currently,Bitcoin is the world’s most popular cryptocurrency.The price of Bitcoin is extremely volatile,which can be described as high-benefit and high-risk.To minimize the risk involved,a means of more accurately predicting the Bitcoin price is required.Most of the existing studies of Bitcoin prediction are based on historical(i.e.,benchmark)data,without considering the real-time(i.e.,live)data.To mitigate the issue of price volatility and achieve more precise outcomes,this study suggests using historical and real-time data to predict the Bitcoin candlestick—or open,high,low,and close(OHLC)—prices.Seeking a better prediction model,the present study proposes time series-based deep learning models.In particular,two deep learning algorithms were applied,namely,long short-term memory(LSTM)and gated recurrent unit(GRU).Using real-time data,the Bitcoin candlesticks were predicted for three intervals:the next 4 h,the next 12 h,and the next 24 h.The results showed that the best-performing model was the LSTM-based model with the 4-h interval.In particular,this model achieved a stellar performance with a mean absolute percentage error(MAPE)of 0.63,a root mean square error(RMSE)of 0.0009,a mean square error(MSE)of 9e-07,a mean absolute error(MAE)of 0.0005,and an R-squared coefficient(R2)of 0.994.With these results,the proposed prediction model has demonstrated its efficiency over the models proposed in previous studies.The findings of this study have considerable implications in the business field,as the proposed model can assist investors and traders in precisely identifying Bitcoin sales and buying opportunities. 展开更多
关键词 Bitcoin PREDICTION long short term memory gated recurrent unit deep neural networks real-time data
下载PDF
Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model
12
作者 Yunlei Zhang RuifengCao +3 位作者 Danhuang Dong Sha Peng RuoyunDu Xiaomin Xu 《Energy Engineering》 EI 2022年第5期1829-1841,共13页
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits... In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting. 展开更多
关键词 Energy storage scheduling short-term load forecasting deep learning network convolutional neural network CNN long and short term memory network LTSM
下载PDF
Micro-expression recognition algorithm based on the combination of spatial and temporal domains
13
作者 吴进 Xi Meng +2 位作者 Dai Wei Wang Lei Wang Xinran 《High Technology Letters》 EI CAS 2021年第3期303-309,共7页
Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to ex... Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to extract spatial features of micro-expressions,and long short-term memory network(LSTM)to extract time domain features.CNN and LSTM are combined as the basis of micro-expression recognition.In many CNN structures,the visual geometry group(VGG)using a small convolution kernel is finally selected as the pre-network through comparison.Due to the difficulty of deep learning training and over-fitting,the dropout method and batch normalization method are used to solve the problem in the VGG network.Two data sets CASME and CASME II are used for test comparison,in order to solve the problem of insufficient data sets,randomly determine the starting frame,and a fixedlength frame sequence is used as the standard,and repeatedly read all sample frames of the entire data set to achieve trayersal and data amplification.Finallv.a hieh recognition rate of 67.48% is achieved. 展开更多
关键词 micro-expression recognition convolutional neural network(CNN) long short-term memory(LSTM) batch normalization algorithm DROPOUT
下载PDF
A Novel MegaBAT Optimized Intelligent Intrusion Detection System in Wireless Sensor Networks
14
作者 G.Nagalalli GRavi 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期475-490,共16页
Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like d... Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs. 展开更多
关键词 Wireless sensor network intrusion detection systems long short term memory megabat optimization
下载PDF
User Station Security Protection Method Based on Random Domain Name Detection and Active Defense
15
作者 Hongyan Yin Xiaokang Ren +2 位作者 Jinyu Liu Shuo Zhang Wenkun Liu 《Journal of Information Security》 2023年第1期39-51,共13页
The power monitoring system is the most important production management system in the power industry. As an important part of the power monitoring system, the user station that lacks grid binding will become an import... The power monitoring system is the most important production management system in the power industry. As an important part of the power monitoring system, the user station that lacks grid binding will become an important target of network attacks. In order to perceive the network attack events on the user station side in time, a method combining real-time detection and active defense of random domain names on the user station side was proposed. Capsule network (CapsNet) combined with long short-term memory network (LSTM) was used to classify the domain names extracted from the traffic data. When a random domain name is detected, it sent instructions to routers and switched to update their security policies through the remote terminal protocol (Telnet), or shut down the service interfaces of routers and switched to block network attacks. The experimental results showed that the use of CapsNet combined with LSTM classification algorithm can achieve 99.16% accuracy and 98% recall rate in random domain name detection. Through the Telnet protocol, routers and switches can be linked to make active defense without interrupting services. 展开更多
关键词 User Station Random Domain Name Detection Capsule network Active Defense long short Term memory
下载PDF
Dynamic Resource Allocation in LTE Radio Access Network Using Machine Learning Techniques
16
作者 Eric Michel Deussom Djomadji Ivan Basile Kabiena +2 位作者 Valery Nkemeni Ayrton Garcia Belinga À Njere Michael Ekonde Sone 《Journal of Computer and Communications》 2023年第6期73-93,共21页
Current LTE networks are experiencing significant growth in the number of users worldwide. The use of data services for online browsing, e-learning, online meetings and initiatives such as smart cities means that subs... Current LTE networks are experiencing significant growth in the number of users worldwide. The use of data services for online browsing, e-learning, online meetings and initiatives such as smart cities means that subscribers stay connected for long periods, thereby saturating a number of signalling resources. One of such resources is the Radio Resource Connected (RRC) parameter, which is allocated to eNodeBs with the aim of limiting the number of connected simultaneously in the network. The fixed allocation of this parameter means that, depending on the traffic at different times of the day and the geographical position, some eNodeBs are saturated with RRC resources (overused) while others have unused RRC resources. However, as these resources are limited, there is the problem of their underutilization (non-optimal utilization of resources at the eNodeB level) due to static allocation (manual configuration of resources). The objective of this paper is to design an efficient machine learning model that will take as input some key performance indices (KPIs) like traffic data, RRC, simultaneous users, etc., for each eNodeB per hour and per day and accurately predict the number of needed RRC resources that will be dynamically allocated to them in order to avoid traffic and financial losses to the mobile network operator. To reach this target, three machine learning algorithms have been studied namely: linear regression, convolutional neural networks and long short-term memory (LSTM) to train three models and evaluate them. The model trained with the LSTM algorithm gave the best performance with 97% accuracy and was therefore implemented in the proposed solution for RRC resource allocation. An interconnection architecture is also proposed to embed the proposed solution into the Operation and maintenance network of a mobile network operator. In this way, the proposed solution can contribute to developing and expanding the concept of Self Organizing Network (SON) used in 4G and 5G networks. 展开更多
关键词 RRC Resources 4G network Linear Regression Convolutional Neural networks long short-Term memory PRECISION
下载PDF
基于ResNet-LSTM的航空发动机性能异常检测方法 被引量:1
17
作者 蔡舒妤 殷航 +1 位作者 史涛 范杰 《航空发动机》 北大核心 2024年第1期135-142,共8页
为了实现数据驱动的航空发动机性能异常的智能检测,提出了一种基于残差网络(ResNet)-长短期记忆网络(LSTM)的发动机性能异常检测方法。采用发动机性能数据图像化方法,在数据降维的同时,完备保留数据的关联特征和时序特征;以残差单元构... 为了实现数据驱动的航空发动机性能异常的智能检测,提出了一种基于残差网络(ResNet)-长短期记忆网络(LSTM)的发动机性能异常检测方法。采用发动机性能数据图像化方法,在数据降维的同时,完备保留数据的关联特征和时序特征;以残差单元构建发动机性能异常检测模型,在加深网络结构的同时,消除深层网络梯度消失问题,提高发动机性能图像空间关联特征的提取能力。同时,引入LSTM,提出基于ResNet-LSTM的发动机性能异常检测模型,通过ResNet与LSTM的融合,强化异常检测模型对时序特征的提取,提升发动机性能异常检测的准确率;通过发动机运行数据进行验证。结果表明:在训练集上,该方法的异常检测准确率为94.95%,比基于ResNet18、ResNet34、ResNet50异常检测模型的分别提高10.87%、8.00%、3.23%;在测试集上,该方法的异常检测准确率为92.15%,比基于ResNet18、ResNet34、ResNet50异常检测模型的分别提高11.81%、9.45%、3.78%。 展开更多
关键词 异常检测 残差网络 长短期记忆网络 航空发动机
下载PDF
结合LSTM自编码器与集成学习的井漏智能识别方法
18
作者 孙伟峰 冯剑寒 +3 位作者 张德志 李威桦 刘凯 戴永寿 《石油钻探技术》 CAS CSCD 北大核心 2024年第3期61-67,共7页
为了解决传统的井漏智能识别模型因井漏样本数量受限导致其识别准确率低的问题,提出了一种长短期记忆(long short-term memory,LSTM)网络与自编码器(auto-encoder,AE)相结合、集成LSTM-AE的井漏智能识别方法。首先,采用正常样本训练多... 为了解决传统的井漏智能识别模型因井漏样本数量受限导致其识别准确率低的问题,提出了一种长短期记忆(long short-term memory,LSTM)网络与自编码器(auto-encoder,AE)相结合、集成LSTM-AE的井漏智能识别方法。首先,采用正常样本训练多个包含不同隐藏层神经元数目的LSTM-AE模型,利用重构得分筛选出识别效果较好的几个模型作为基识别器;然后,采用集成学习对多个基识别器的识别结果进行加权融合,解决单一模型因对样本局部特征过度学习导致的误报与漏报问题,提高模型的识别准确率。从某油田18口井的钻井数据中选取了6000组正常钻进状态下的立压、出口流量、池体积数据,对集成LSTM-AE模型进行训练和测试,结果表明,提出方法的识别准确率达到了94.7%,优于其他常用的智能模型的识别结果,为井漏识别提供了一种新的技术途径。 展开更多
关键词 井漏识别 长短期记忆网络 自编码器 集成学习
下载PDF
基于字词向量融合的民航智慧监管短文本分类
19
作者 王欣 干镞锐 +2 位作者 许雅玺 史珂 郑涛 《中国安全科学学报》 CAS CSCD 北大核心 2024年第2期37-44,共8页
为解决民航监管事项所产生的检查记录仅依靠人工进行分类分析导致效率低的问题,提出一种基于数据增强与字词向量融合的双通道特征提取的短文本分类模型,探讨民航监管事项的分类,包括与人、设备设施环境、制度程序和机构职责等相关问题... 为解决民航监管事项所产生的检查记录仅依靠人工进行分类分析导致效率低的问题,提出一种基于数据增强与字词向量融合的双通道特征提取的短文本分类模型,探讨民航监管事项的分类,包括与人、设备设施环境、制度程序和机构职责等相关问题。为解决类别不平衡问题,采用数据增强算法在原始文本上进行变换,生成新的样本,使各个类别的样本数量更加均衡。将字向量和词向量按字融合拼接,得到具有词特征信息的字向量。将字词融合的向量分别送入到文本卷积神经网络(TextCNN)和双向长短期记忆(BiLSTM)模型中进行不同维度的特征提取,从局部的角度和全局的角度分别提取特征,并在民航监管事项检查记录数据集上进行试验。结果表明:该模型准确率为0.9837,F 1值为0.9836。与一些字嵌入模型和词嵌入模型相对比,准确率提升0.4%。和一些常用的单通道模型相比,准确率提升3%,验证了双通道模型提取的特征具有全面性和有效性。 展开更多
关键词 字词向量融合 民航监管 短文本 文本卷积神经网络(TextCNN) 双向长短期记忆(BiLSTM)
下载PDF
基于ConvLSTM-CNN预测太平洋长鳍金枪鱼时空分布趋势
20
作者 杜艳玲 马玉玲 +3 位作者 汪金涛 陈珂 林泓羽 陈刚 《海洋通报》 CAS CSCD 北大核心 2024年第2期174-187,共14页
海洋渔场的变动由空间与环境因子共同驱动,渔场时空演变信息的精准预测是海洋捕捞的关键。本研究利用1995-2018年太平洋海域长鳍金枪鱼(Thunnus alalunga)的渔业生产统计数据,结合同期海洋环境数据包括海表面温度(Sea Surface Temperatu... 海洋渔场的变动由空间与环境因子共同驱动,渔场时空演变信息的精准预测是海洋捕捞的关键。本研究利用1995-2018年太平洋海域长鳍金枪鱼(Thunnus alalunga)的渔业生产统计数据,结合同期海洋环境数据包括海表面温度(Sea Surface Temperature,SST)、海表面盐度(Sea Surface Salinity,SSS)、初级生产力(Primary Productivity,PP)和溶解氧浓度(Dissolved Oxygen Concentration,DO),提出了一种融合卷积长短期记忆网络(Convolutional Long Short-Term Memory Networks,ConvLSTM)和卷积神经网络(Convolutional Neural Networks,CNN)的渔场时空分布预测模型。该模型引入特征提取模块,对时空因子进行编码,提取时空特征信息,同时采用CNN提取海洋环境变量的抽象特征,采用ConvLSTM提取渔业数据的高层时空关联信息,最后融合多种特征对渔场时空演变趋势进行预测。结果表明,模型的均方根误差为0.1036,较随机森林、BP神经网络和长短期记忆网络(Long Short Term Memory,LSTM)等传统渔场预报模型的预测误差降低15%~40%,预测的高产渔区与实际作业的高渔获量区匹配度为89%。该研究构建的渔场时空预测模型能够准确地预测出太平洋长鳍金枪鱼的时空分布,为太平洋长鳍金枪鱼的延绳钓渔业提供科学参考依据。 展开更多
关键词 长鳍金枪鱼 时空分布 融合卷积长短期记忆网络 卷积神经网络 太平洋
下载PDF
上一页 1 2 177 下一页 到第
使用帮助 返回顶部