Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial featur...Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial features among the consecutive speech frames become highly correlated such that it is helpful for speaker separation by providing additional spatial information.To fully exploit this information,we design a separation system on Recurrent Neural Network(RNN)with long short-term memory(LSTM)which effectively learns the temporal dynamics of spatial features.In detail,a LSTM-based speaker separation algorithm is proposed to extract the spatial features in each time-frequency(TF)unit and form the corresponding feature vector.Then,we treat speaker separation as a supervised learning problem,where a modified ideal ratio mask(IRM)is defined as the training function during LSTM learning.Simulations show that the proposed system achieves attractive separation performance in noisy and reverberant environments.Specifically,during the untrained acoustic test with limited priors,e.g.,unmatched signal to noise ratio(SNR)and reverberation,the proposed LSTM based algorithm can still outperforms the existing DNN based method in the measures of PESQ and STOI.It indicates our method is more robust in untrained conditions.展开更多
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es...In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.展开更多
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat...In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.展开更多
Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep lear...Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions.展开更多
Time series forecasting and analysis are widely used in many fields and application scenarios.Time series historical data reflects the change pattern and trend,which can serve the application and decision in each appl...Time series forecasting and analysis are widely used in many fields and application scenarios.Time series historical data reflects the change pattern and trend,which can serve the application and decision in each application scenario to a certain extent.In this paper,we select the time series prediction problem in the atmospheric environment scenario to start the application research.In terms of data support,we obtain the data of nearly 3500 vehicles in some cities in China fromRunwoda Research Institute,focusing on the major pollutant emission data of non-road mobile machinery and high emission vehicles in Beijing and Bozhou,Anhui Province to build the dataset and conduct the time series prediction analysis experiments on them.This paper proposes a P-gLSTNet model,and uses Autoregressive Integrated Moving Average model(ARIMA),long and short-term memory(LSTM),and Prophet to predict and compare the emissions in the future period.The experiments are validated on four public data sets and one self-collected data set,and the mean absolute error(MAE),root mean square error(RMSE),and mean absolute percentage error(MAPE)are selected as the evaluationmetrics.The experimental results show that the proposed P-gLSTNet fusion model predicts less error,outperforms the backbone method,and is more suitable for the prediction of time-series data in this scenario.展开更多
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force...A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.展开更多
The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process par...The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines.展开更多
Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate e...Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model.展开更多
Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the origina...Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient.展开更多
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w...Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy.展开更多
Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulati...Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods.展开更多
Currently,Bitcoin is the world’s most popular cryptocurrency.The price of Bitcoin is extremely volatile,which can be described as high-benefit and high-risk.To minimize the risk involved,a means of more accurately pr...Currently,Bitcoin is the world’s most popular cryptocurrency.The price of Bitcoin is extremely volatile,which can be described as high-benefit and high-risk.To minimize the risk involved,a means of more accurately predicting the Bitcoin price is required.Most of the existing studies of Bitcoin prediction are based on historical(i.e.,benchmark)data,without considering the real-time(i.e.,live)data.To mitigate the issue of price volatility and achieve more precise outcomes,this study suggests using historical and real-time data to predict the Bitcoin candlestick—or open,high,low,and close(OHLC)—prices.Seeking a better prediction model,the present study proposes time series-based deep learning models.In particular,two deep learning algorithms were applied,namely,long short-term memory(LSTM)and gated recurrent unit(GRU).Using real-time data,the Bitcoin candlesticks were predicted for three intervals:the next 4 h,the next 12 h,and the next 24 h.The results showed that the best-performing model was the LSTM-based model with the 4-h interval.In particular,this model achieved a stellar performance with a mean absolute percentage error(MAPE)of 0.63,a root mean square error(RMSE)of 0.0009,a mean square error(MSE)of 9e-07,a mean absolute error(MAE)of 0.0005,and an R-squared coefficient(R2)of 0.994.With these results,the proposed prediction model has demonstrated its efficiency over the models proposed in previous studies.The findings of this study have considerable implications in the business field,as the proposed model can assist investors and traders in precisely identifying Bitcoin sales and buying opportunities.展开更多
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ...Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.展开更多
There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for...There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects.展开更多
Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of...Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach.展开更多
Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like d...Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs.展开更多
Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5...Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best.展开更多
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits...In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.展开更多
Considering the recent developments in deep learning, it has become increasingly important to verify what methods are valid for the prediction of multivariate time-series data. In this study, we propose a novel method...Considering the recent developments in deep learning, it has become increasingly important to verify what methods are valid for the prediction of multivariate time-series data. In this study, we propose a novel method of time-series prediction employing multiple deep learners combined with a Bayesian network where training data is divided into clusters using K-means clustering. We decided how many clusters are the best for K-means with the Bayesian information criteria. Depending on each cluster, the multiple deep learners are trained. We used three types of deep learners: deep neural network (DNN), recurrent neural network (RNN), and long short-term memory (LSTM). A naive Bayes classifier is used to determine which deep learner is in charge of predicting a particular time-series. Our proposed method will be applied to a set of financial time-series data, the Nikkei Average Stock price, to assess the accuracy of the predictions made. Compared with the conventional method of employing a single deep learner to acquire all the data, it is demonstrated by our proposed method that F-value and accuracy are improved.展开更多
基金This work is supported by the National Nature Science Foundation of China(NSFC)under Grant Nos.61571106,61501169,41706103the Fundamental Research Funds for the Central Universities under Grant No.2242013K30010.
文摘Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial features among the consecutive speech frames become highly correlated such that it is helpful for speaker separation by providing additional spatial information.To fully exploit this information,we design a separation system on Recurrent Neural Network(RNN)with long short-term memory(LSTM)which effectively learns the temporal dynamics of spatial features.In detail,a LSTM-based speaker separation algorithm is proposed to extract the spatial features in each time-frequency(TF)unit and form the corresponding feature vector.Then,we treat speaker separation as a supervised learning problem,where a modified ideal ratio mask(IRM)is defined as the training function during LSTM learning.Simulations show that the proposed system achieves attractive separation performance in noisy and reverberant environments.Specifically,during the untrained acoustic test with limited priors,e.g.,unmatched signal to noise ratio(SNR)and reverberation,the proposed LSTM based algorithm can still outperforms the existing DNN based method in the measures of PESQ and STOI.It indicates our method is more robust in untrained conditions.
文摘In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.
基金supported in part by the Gansu Province Higher Education Institutions Industrial Support Program:Security Situational Awareness with Artificial Intelligence and Blockchain Technology.Project Number(2020C-29).
文摘In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.
基金funded by the Natural Science Foundation of Fujian Province,China (Grant No.2022J05291)Xiamen Scientific Research Funding for Overseas Chinese Scholars.
文摘Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions.
基金the Beijing Chaoyang District Collaborative Innovation Project(No.CYXT2013)the subject support of Beijing Municipal Science and Technology Key R&D Program-Capital Blue Sky Action Cultivation Project(Z19110900910000)+1 种基金“Research and Demonstration ofHigh Emission Vehicle Monitoring Equipment System Based on Sensor Integration Technology”(Z19110000911003)This work was supported by the Academic Research Projects of Beijing Union University(No.ZK80202103).
文摘Time series forecasting and analysis are widely used in many fields and application scenarios.Time series historical data reflects the change pattern and trend,which can serve the application and decision in each application scenario to a certain extent.In this paper,we select the time series prediction problem in the atmospheric environment scenario to start the application research.In terms of data support,we obtain the data of nearly 3500 vehicles in some cities in China fromRunwoda Research Institute,focusing on the major pollutant emission data of non-road mobile machinery and high emission vehicles in Beijing and Bozhou,Anhui Province to build the dataset and conduct the time series prediction analysis experiments on them.This paper proposes a P-gLSTNet model,and uses Autoregressive Integrated Moving Average model(ARIMA),long and short-term memory(LSTM),and Prophet to predict and compare the emissions in the future period.The experiments are validated on four public data sets and one self-collected data set,and the mean absolute error(MAE),root mean square error(RMSE),and mean absolute percentage error(MAPE)are selected as the evaluationmetrics.The experimental results show that the proposed P-gLSTNet fusion model predicts less error,outperforms the backbone method,and is more suitable for the prediction of time-series data in this scenario.
基金supported by the Ministry of Trade,Industry & Energy(MOTIE,Korea) under Industrial Technology Innovation Program (No.10063424,'development of distant speech recognition and multi-task dialog processing technologies for in-door conversational robots')
文摘A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.
基金funded by Fujian Science and Technology Key Project(No.2016H6022,2018J01099,2017H0037)
文摘The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines.
文摘Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model.
基金National Natural Science Foundation of China(No.71961016)Planning Fund for the Humanities and Social Sciences of the Ministry of Education(Nos.15XJAZH002,18YJAZH148)Natural Science Foundation of Gansu Province(No.18JR3RA125)。
文摘Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient.
基金support of national natural science foundation of China(No.52067021)natural science foundation of Xinjiang(2022D01C35)+1 种基金excellent youth scientific and technological talents plan of Xinjiang(No.2019Q012)major science&technology special project of Xinjiang Uygur Autonomous Region(2022A01002-2)。
文摘Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy.
基金funded by NARI Group’s Independent Project of China(Granted No.524609230125)the foundation of NARI-TECH Nanjing Control System Ltd.of China(Granted No.0914202403120020).
文摘Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods.
文摘Currently,Bitcoin is the world’s most popular cryptocurrency.The price of Bitcoin is extremely volatile,which can be described as high-benefit and high-risk.To minimize the risk involved,a means of more accurately predicting the Bitcoin price is required.Most of the existing studies of Bitcoin prediction are based on historical(i.e.,benchmark)data,without considering the real-time(i.e.,live)data.To mitigate the issue of price volatility and achieve more precise outcomes,this study suggests using historical and real-time data to predict the Bitcoin candlestick—or open,high,low,and close(OHLC)—prices.Seeking a better prediction model,the present study proposes time series-based deep learning models.In particular,two deep learning algorithms were applied,namely,long short-term memory(LSTM)and gated recurrent unit(GRU).Using real-time data,the Bitcoin candlesticks were predicted for three intervals:the next 4 h,the next 12 h,and the next 24 h.The results showed that the best-performing model was the LSTM-based model with the 4-h interval.In particular,this model achieved a stellar performance with a mean absolute percentage error(MAPE)of 0.63,a root mean square error(RMSE)of 0.0009,a mean square error(MSE)of 9e-07,a mean absolute error(MAE)of 0.0005,and an R-squared coefficient(R2)of 0.994.With these results,the proposed prediction model has demonstrated its efficiency over the models proposed in previous studies.The findings of this study have considerable implications in the business field,as the proposed model can assist investors and traders in precisely identifying Bitcoin sales and buying opportunities.
基金the Gansu Province Soft Scientific Research Projects(No.2015GS06516)the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China(No.J201304)。
文摘Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.
文摘There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects.
基金supported by two Ministry of Education(MoE)Singapore Tier 1 research grants under grant numbers R-296-000-208-133 and R-296-000-241-114.
文摘Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach.
文摘Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs.
文摘Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best.
基金supported by a State Grid Zhejiang Electric Power Co.,Ltd.Economic and Technical Research Institute Project(Key Technologies and Empirical Research of Diversified Integrated Operation of User-Side Energy Storage in Power Market Environment,No.5211JY19000W)supported by the National Natural Science Foundation of China(Research on Power Market Management to Promote Large-Scale New Energy Consumption,No.71804045).
文摘In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.
文摘Considering the recent developments in deep learning, it has become increasingly important to verify what methods are valid for the prediction of multivariate time-series data. In this study, we propose a novel method of time-series prediction employing multiple deep learners combined with a Bayesian network where training data is divided into clusters using K-means clustering. We decided how many clusters are the best for K-means with the Bayesian information criteria. Depending on each cluster, the multiple deep learners are trained. We used three types of deep learners: deep neural network (DNN), recurrent neural network (RNN), and long short-term memory (LSTM). A naive Bayes classifier is used to determine which deep learner is in charge of predicting a particular time-series. Our proposed method will be applied to a set of financial time-series data, the Nikkei Average Stock price, to assess the accuracy of the predictions made. Compared with the conventional method of employing a single deep learner to acquire all the data, it is demonstrated by our proposed method that F-value and accuracy are improved.