针对1 n mile/100 d甚至更高精度的长航时惯性导航定位需求,分析并指出了传统地球自转角速度模型参数的不足之处。根据天文学中的岁差、章动和日长变化等相关模型,推导了求解精确的地球自转角速度的方法,给出了传统地球自转角速度模型...针对1 n mile/100 d甚至更高精度的长航时惯性导航定位需求,分析并指出了传统地球自转角速度模型参数的不足之处。根据天文学中的岁差、章动和日长变化等相关模型,推导了求解精确的地球自转角速度的方法,给出了传统地球自转角速度模型误差的表达式,对惯导系统误差传播方程进行了修正。开展了长航时高精度惯性导航误差仿真验证,结果显示,传统的地球自转角速度模型误差会引起0.1 n mile/100 d的纯惯性定位误差,但经过修正后误差可降低60%以上,仿真结果验证了所描述的误差传播方程的正确性。展开更多
文摘针对1 n mile/100 d甚至更高精度的长航时惯性导航定位需求,分析并指出了传统地球自转角速度模型参数的不足之处。根据天文学中的岁差、章动和日长变化等相关模型,推导了求解精确的地球自转角速度的方法,给出了传统地球自转角速度模型误差的表达式,对惯导系统误差传播方程进行了修正。开展了长航时高精度惯性导航误差仿真验证,结果显示,传统的地球自转角速度模型误差会引起0.1 n mile/100 d的纯惯性定位误差,但经过修正后误差可降低60%以上,仿真结果验证了所描述的误差传播方程的正确性。