Study Design: This is a retrospective cohort study using data from the adult spinal deformity (ASD) database of a single institution. Purpose: To investigate the incidence of proximal junctional failure and distal jun...Study Design: This is a retrospective cohort study using data from the adult spinal deformity (ASD) database of a single institution. Purpose: To investigate the incidence of proximal junctional failure and distal junctional failure (DJF) after ASD surgery with a lower instrumented vertebra (LIV) at L5. Overview of Literature: Spinopelvic fixation from the lower thoracic vertebra to the pelvis is the current gold standard treatment for ASD. However, the LIV at L5 is acceptable in some cases. Methods: Fifty-six patients who underwent corrective surgery for ASD with LIV at L5 were included. The upper instrumented vertebra (UIV) was T7 in one patient, T9 in 14, T10 in three, T11 in four, T12 in eight, L1 in 10, and L2 in 16. Regarding clinical parameters, age, sex, curve types of Scoliosis Research Society-Schwab classification, number of levels fused, follow-up period, hip bone mallow density, revision surgery rate, and radiographic measurements were compared between the T (UIV: T7 - 10) and TL (UIV: T11 - L2) groups. Results: The revision surgery rate was 19.6% overall. In the T and TL groups, it was 27.8%, and 15.8%, respectively (p = 0.305). The rate of DJF in the T group (33.3%) was significantly higher than in the TL group (5.3%). The rate of proximal junctional kyphosis in the T group (55.6%) was higher than in the TL group (28.9%), with no significant difference. The mean global alignment, sagittal vertical axis, and C7 plumb line-central sacral vertical line were not different between both groups. Conclusions: ASD surgery with LIV set at L5 and UIV set at the thoracic vertebrae (T7 - T10) has a risk of adjacent segment disease.展开更多
针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目...针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目标检测,避免小目标特征信息的丢失。网络中应用结构重参数化结构提高了模块学习能力。为了满足多尺度目标检测,加入特征金字塔网络,融合多尺度特征。为了应对近岸样本目标检测,设计数据重分配算法,提高了对近岸样本目标的检测精度。实验结果表明:在公开数据集检测时,算法的平均精度(Average Precision,AP)达到97.50%,优于主流目标检测算法。该方法为提高SAR图像中小目标和近岸样本目标检测精度提供了新的实现方案。展开更多
Congenital pure kyphosis due to failure of vertebral body segmentation is a relatively rare entity, and surgical intervention is infrequent compared to that for failure of vertebral body formation [1] [2]. There are v...Congenital pure kyphosis due to failure of vertebral body segmentation is a relatively rare entity, and surgical intervention is infrequent compared to that for failure of vertebral body formation [1] [2]. There are very few reports of long-term follow-up of surgical treatment in patients with congenital pure kyphosis, and all the reported cases were diagnosed as failure of formation and had an age at the time of surgery of less than 18 years. It is important for orthopedic surgeons to follow the postoperative course of rare cases over 30 years. Here, we present a surgically treated case with ultra-long term follow-up of a 50-year-old patient with congenital pure kyphosis of the lumbar spine. Imaging of the lumbar spine showed six vertebrae and an unsegmented bar at L3-4 causing a pure kyphosis of 54°. The wedge-shaped block vertebra had 4 pedicles with the neural foramen between the pedicles without concomitant disc space, with compensatory thoracic hypokyphosis and lower lumbar hyperlordosis. One-stage correction and fusion surgery using anterior opening and posterior closing osteotomy was successfully performed. Both clinical and radiographic results were excellent and have been maintained for over 30 years postoperatively. The basic principle in the surgical treatment of adult spinal deformity is to achieve and maintain a good global sagittal balance over time. This case reaffirms the importance of spinopelvic harmony.展开更多
针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷...针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷积神经网络和自注意力并行的双分支结构提取局部和全局特征,并加入空洞特征增强模块(DFM)减少深层特征图在降维过程中信息的丢失;上采样采用特征金字塔与多级注意力融合模块(MAFM)相结合的方式进行多级特征融合以增强文本特征间的潜在联系,通过文本检测器从上采样输出的特征图中检测文本组件;在链接关系预测网络中,采用基于图卷积网络的关系推理框架预测文本组件间的深层相似度,采用双向长短时记忆网络将文本组件聚合为文本实例。为验证RRNet的检测性能,构建了一个由商品包装图片组成的文本检测数据集(text detection dataset composed of commodity packaging,CPTD1500)。实验结果表明:RPTNet不仅在公开文本数据集CTW-1500和Total-Text上取得了优异的性能,而且在CPTD1500数据集上的召回率和F值分别达到了85.4%和87.5%,均优于当前主流算法。展开更多
针对图像描述方法中对图像文本信息的遗忘及利用不充分问题,提出了基于场景图感知的跨模态交互网络(SGC-Net)。首先,使用场景图作为图像的视觉特征并使用图卷积网络(GCN)进行特征融合,从而使图像的视觉特征和文本特征位于同一特征空间;...针对图像描述方法中对图像文本信息的遗忘及利用不充分问题,提出了基于场景图感知的跨模态交互网络(SGC-Net)。首先,使用场景图作为图像的视觉特征并使用图卷积网络(GCN)进行特征融合,从而使图像的视觉特征和文本特征位于同一特征空间;其次,保存模型生成的文本序列,并添加对应的位置信息作为图像的文本特征,以解决单层长短期记忆(LSTM)网络导致的文本特征丢失的问题;最后,使用自注意力机制提取出重要的图像信息和文本信息后并对它们进行融合,以解决对图像信息过分依赖以及对文本信息利用不足的问题。在Flickr30K和MSCOCO(MicroSoft Common Objects in COntext)数据集上进行实验的结果表明,与Sub-GC相比,SGC-Net在BLEU1(BiLingual Evaluation Understudy with 1-gram)、BLEU4(BiLingual Evaluation Understudy with 4-grams)、METEOR(Metric for Evaluation of Translation with Explicit ORdering)、ROUGE(Recall-Oriented Understudy for Gisting Evaluation)和SPICE(Semantic Propositional Image Caption Evaluation)指标上分别提升了1.1、0.9、0.3、0.7、0.4和0.3、0.1、0.3、0.5、0.6。可见,SGC-Net所使用的方法能够有效提升模型的图像描述性能及生成描述的流畅度。展开更多
文摘Study Design: This is a retrospective cohort study using data from the adult spinal deformity (ASD) database of a single institution. Purpose: To investigate the incidence of proximal junctional failure and distal junctional failure (DJF) after ASD surgery with a lower instrumented vertebra (LIV) at L5. Overview of Literature: Spinopelvic fixation from the lower thoracic vertebra to the pelvis is the current gold standard treatment for ASD. However, the LIV at L5 is acceptable in some cases. Methods: Fifty-six patients who underwent corrective surgery for ASD with LIV at L5 were included. The upper instrumented vertebra (UIV) was T7 in one patient, T9 in 14, T10 in three, T11 in four, T12 in eight, L1 in 10, and L2 in 16. Regarding clinical parameters, age, sex, curve types of Scoliosis Research Society-Schwab classification, number of levels fused, follow-up period, hip bone mallow density, revision surgery rate, and radiographic measurements were compared between the T (UIV: T7 - 10) and TL (UIV: T11 - L2) groups. Results: The revision surgery rate was 19.6% overall. In the T and TL groups, it was 27.8%, and 15.8%, respectively (p = 0.305). The rate of DJF in the T group (33.3%) was significantly higher than in the TL group (5.3%). The rate of proximal junctional kyphosis in the T group (55.6%) was higher than in the TL group (28.9%), with no significant difference. The mean global alignment, sagittal vertical axis, and C7 plumb line-central sacral vertical line were not different between both groups. Conclusions: ASD surgery with LIV set at L5 and UIV set at the thoracic vertebrae (T7 - T10) has a risk of adjacent segment disease.
文摘针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目标检测,避免小目标特征信息的丢失。网络中应用结构重参数化结构提高了模块学习能力。为了满足多尺度目标检测,加入特征金字塔网络,融合多尺度特征。为了应对近岸样本目标检测,设计数据重分配算法,提高了对近岸样本目标的检测精度。实验结果表明:在公开数据集检测时,算法的平均精度(Average Precision,AP)达到97.50%,优于主流目标检测算法。该方法为提高SAR图像中小目标和近岸样本目标检测精度提供了新的实现方案。
文摘Congenital pure kyphosis due to failure of vertebral body segmentation is a relatively rare entity, and surgical intervention is infrequent compared to that for failure of vertebral body formation [1] [2]. There are very few reports of long-term follow-up of surgical treatment in patients with congenital pure kyphosis, and all the reported cases were diagnosed as failure of formation and had an age at the time of surgery of less than 18 years. It is important for orthopedic surgeons to follow the postoperative course of rare cases over 30 years. Here, we present a surgically treated case with ultra-long term follow-up of a 50-year-old patient with congenital pure kyphosis of the lumbar spine. Imaging of the lumbar spine showed six vertebrae and an unsegmented bar at L3-4 causing a pure kyphosis of 54°. The wedge-shaped block vertebra had 4 pedicles with the neural foramen between the pedicles without concomitant disc space, with compensatory thoracic hypokyphosis and lower lumbar hyperlordosis. One-stage correction and fusion surgery using anterior opening and posterior closing osteotomy was successfully performed. Both clinical and radiographic results were excellent and have been maintained for over 30 years postoperatively. The basic principle in the surgical treatment of adult spinal deformity is to achieve and maintain a good global sagittal balance over time. This case reaffirms the importance of spinopelvic harmony.
文摘针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷积神经网络和自注意力并行的双分支结构提取局部和全局特征,并加入空洞特征增强模块(DFM)减少深层特征图在降维过程中信息的丢失;上采样采用特征金字塔与多级注意力融合模块(MAFM)相结合的方式进行多级特征融合以增强文本特征间的潜在联系,通过文本检测器从上采样输出的特征图中检测文本组件;在链接关系预测网络中,采用基于图卷积网络的关系推理框架预测文本组件间的深层相似度,采用双向长短时记忆网络将文本组件聚合为文本实例。为验证RRNet的检测性能,构建了一个由商品包装图片组成的文本检测数据集(text detection dataset composed of commodity packaging,CPTD1500)。实验结果表明:RPTNet不仅在公开文本数据集CTW-1500和Total-Text上取得了优异的性能,而且在CPTD1500数据集上的召回率和F值分别达到了85.4%和87.5%,均优于当前主流算法。
文摘针对图像描述方法中对图像文本信息的遗忘及利用不充分问题,提出了基于场景图感知的跨模态交互网络(SGC-Net)。首先,使用场景图作为图像的视觉特征并使用图卷积网络(GCN)进行特征融合,从而使图像的视觉特征和文本特征位于同一特征空间;其次,保存模型生成的文本序列,并添加对应的位置信息作为图像的文本特征,以解决单层长短期记忆(LSTM)网络导致的文本特征丢失的问题;最后,使用自注意力机制提取出重要的图像信息和文本信息后并对它们进行融合,以解决对图像信息过分依赖以及对文本信息利用不足的问题。在Flickr30K和MSCOCO(MicroSoft Common Objects in COntext)数据集上进行实验的结果表明,与Sub-GC相比,SGC-Net在BLEU1(BiLingual Evaluation Understudy with 1-gram)、BLEU4(BiLingual Evaluation Understudy with 4-grams)、METEOR(Metric for Evaluation of Translation with Explicit ORdering)、ROUGE(Recall-Oriented Understudy for Gisting Evaluation)和SPICE(Semantic Propositional Image Caption Evaluation)指标上分别提升了1.1、0.9、0.3、0.7、0.4和0.3、0.1、0.3、0.5、0.6。可见,SGC-Net所使用的方法能够有效提升模型的图像描述性能及生成描述的流畅度。