This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this p...This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this paper to get 5 minutes traffic volume variation as input data for the Gaussian interval type-2 fuzzy sets which can reflect the distribution of historical traffic volume in one statistical period. Moreover, the cluster with the largest collection of data obtained by K-means clustering method is calculated to get the key parameters of type-2 fuzzy sets, mean and standard deviation of the Gaussian membership function.Using the range of data as the input of Gaussian interval type-2 fuzzy sets leads to the range of traffic volume forecasting output with the ability of describing the possible range of the traffic volume as well as the traffic volume prediction data with high accuracy. The simulation results show that the average relative error is reduced to 8% based on the combined K-means Gaussian interval type-2 fuzzy sets forecasting method. The fluctuation range in terms of an upper and a lower forecasting traffic volume completely envelopes the actual traffic volume and reproduces the fluctuation range of traffic flow.展开更多
The alpha stable self-similar stochastic process has been proved an effective model for high variable data traffic. A deep insight into some special issues and considerations on use of the process to model aggregated ...The alpha stable self-similar stochastic process has been proved an effective model for high variable data traffic. A deep insight into some special issues and considerations on use of the process to model aggregated VBR video traffic is made. Different methods to estimate stability parameter a and self-similar parameter H are compared. Processes to generate the linear fractional stable noise (LFSN) and the alpha stable random variables are provided. Model construction and the quantitative comparisons with fractional Brown motion (FBM) and real traffic are also examined. Open problems and future directions are also given with thoughtful discussions.展开更多
As an important parameter to describe the sudden nature of network traffic, Hurst index typically conducts behaviors of both self-similarity and long-range dependence. With the evolution of network traffic over time, ...As an important parameter to describe the sudden nature of network traffic, Hurst index typically conducts behaviors of both self-similarity and long-range dependence. With the evolution of network traffic over time, more and more data are generated. Hurst index estimation value changes with it, which is strictly consistent with the asymptotic property of long-range dependence. This paper presents an approach towards dynamic asymptotic estimation for Hurst index. Based on the calculations in terms of the incremental part of time series, the algorithm enjoys a considerable reduction in computational complexity. Moreover, the local sudden nature of network traffic can be readily captured by a series of real-time Hurst index estimation values dynamically. The effectiveness and tractability of the proposed approach are demonstrated through the traffic data from OPNET simulations as well as real network, respectively.展开更多
Now, the problem of modeling MPEG 1 video traffic still needs studying further. Based on the analysis of statistical characteristics of this kind of traffic, this paper presents a new traffic model. Simulation result...Now, the problem of modeling MPEG 1 video traffic still needs studying further. Based on the analysis of statistical characteristics of this kind of traffic, this paper presents a new traffic model. Simulation results show that the proposed model can reflect the statistical characteristics of the real MPEG 1 video traffic well.展开更多
交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensatio...交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensation,MCEC).针对传统预测模型不能兼顾时间序列和协变量的问题,提出基于小波分析的特征拓展方法,该方法引入聚类算法得到节假日标签特征,将拥堵指数、交通事故图、天气信息作为拓展特征,对特征进行多尺度分解.在训练阶段,为达到充分学习各部分数据、最优匹配模型的效果,采用差分整合移动平均自回归模型(Autoreg Ressive Integrated Moving Average Model,ARIMA)、长短期记忆神经网络(Long Short-Term Memory network,LSTM)、限制动态时间规整技术(Dynamic Time Warping,DTW)以及自注意力机制(Self-Attention),设计了多模态协同模型训练.在误差补偿阶段,将得到的相应过程值输入基于支持向量机回归(Support Vector Regression,SVR)的误差补偿模块,对各分量的误差进行学习、补偿,并重构得到预测结果.使用公开的高速公路数据集对MCEC进行验证,在多个时间间隔下对比实验结果表明,MCEC在交通流量预测中的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)达到17.02%,比LSTM-SVR、ConvLSTM(Convolutional Long Short-Term Memory network)、ST-GCN(Spatial Temporal Graph Convolutional Networks)、MFFB(Multi-stream Feature Fusion Block)、Transformer等预测模型具有更高的预测精度,MCEC模型具有较好的有效性与合理性.展开更多
基金supported by the National Key Research and Development Program of China(2018YFB1201500)
文摘This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this paper to get 5 minutes traffic volume variation as input data for the Gaussian interval type-2 fuzzy sets which can reflect the distribution of historical traffic volume in one statistical period. Moreover, the cluster with the largest collection of data obtained by K-means clustering method is calculated to get the key parameters of type-2 fuzzy sets, mean and standard deviation of the Gaussian membership function.Using the range of data as the input of Gaussian interval type-2 fuzzy sets leads to the range of traffic volume forecasting output with the ability of describing the possible range of the traffic volume as well as the traffic volume prediction data with high accuracy. The simulation results show that the average relative error is reduced to 8% based on the combined K-means Gaussian interval type-2 fuzzy sets forecasting method. The fluctuation range in terms of an upper and a lower forecasting traffic volume completely envelopes the actual traffic volume and reproduces the fluctuation range of traffic flow.
文摘The alpha stable self-similar stochastic process has been proved an effective model for high variable data traffic. A deep insight into some special issues and considerations on use of the process to model aggregated VBR video traffic is made. Different methods to estimate stability parameter a and self-similar parameter H are compared. Processes to generate the linear fractional stable noise (LFSN) and the alpha stable random variables are provided. Model construction and the quantitative comparisons with fractional Brown motion (FBM) and real traffic are also examined. Open problems and future directions are also given with thoughtful discussions.
文摘As an important parameter to describe the sudden nature of network traffic, Hurst index typically conducts behaviors of both self-similarity and long-range dependence. With the evolution of network traffic over time, more and more data are generated. Hurst index estimation value changes with it, which is strictly consistent with the asymptotic property of long-range dependence. This paper presents an approach towards dynamic asymptotic estimation for Hurst index. Based on the calculations in terms of the incremental part of time series, the algorithm enjoys a considerable reduction in computational complexity. Moreover, the local sudden nature of network traffic can be readily captured by a series of real-time Hurst index estimation values dynamically. The effectiveness and tractability of the proposed approach are demonstrated through the traffic data from OPNET simulations as well as real network, respectively.
文摘Now, the problem of modeling MPEG 1 video traffic still needs studying further. Based on the analysis of statistical characteristics of this kind of traffic, this paper presents a new traffic model. Simulation results show that the proposed model can reflect the statistical characteristics of the real MPEG 1 video traffic well.