The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-shor...The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-short term memory(LSTM)network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam.Principal component analysis indicates that rock charac-teristics,the structural plane,the protection layer,lithology,and time are the main factors.The LSTM network results demonstrate the unloading relaxation characteristics of the left bank,and the relationships with the factors were also analyzed.The structural plane has the most significant influence on the distribution of unloading relaxation zones.Compared with massive basalt,the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect,with the average unloading relaxation period being 50 d.The protection layer can effectively reduce the unloading relaxation depth by approximately 20%.展开更多
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es...In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.展开更多
脱硫过程是具有高度动态非线性和较大延迟时间的复杂工业过程,为了解决烟气脱硫过程的建模问题,设计了注意力机制下的深度长短期记忆(attention mechanism-based long short-term memory,AttLSTM)网络,并基于该网络设计自动编码器,完成...脱硫过程是具有高度动态非线性和较大延迟时间的复杂工业过程,为了解决烟气脱硫过程的建模问题,设计了注意力机制下的深度长短期记忆(attention mechanism-based long short-term memory,AttLSTM)网络,并基于该网络设计自动编码器,完成脱硫过程异常点的检测。该文首次提出使用AttLSTM网络自编码器对脱硫过程进行离群点检测,并且该网络模型同样首次应用于脱硫过程的辨识任务中。从更深的意义上讲,该文尝试使用深度学习模型对复杂系统进行辨识,所建立的AttLSTM网络之前未出现在系统辨识领域,该网络的出现可以丰富辨识模型的选择,同时为人工智能技术在系统辨识领域和控制领域的应用与推广提供参考。实验结果表明,相比于之前文献出现的脱硫过程建模方法,所提方法在不同性能指标上均具有更好的表现,由此可以证明深度AttLSTM网络在脱硫场景下的有效性。展开更多
基金This work was supported by the National Key Research and Development Program of China(Grant No.2018YFC0407004)the Natural Science Foundation of China(Grants No.51939004 and 11772116).
文摘The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-short term memory(LSTM)network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam.Principal component analysis indicates that rock charac-teristics,the structural plane,the protection layer,lithology,and time are the main factors.The LSTM network results demonstrate the unloading relaxation characteristics of the left bank,and the relationships with the factors were also analyzed.The structural plane has the most significant influence on the distribution of unloading relaxation zones.Compared with massive basalt,the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect,with the average unloading relaxation period being 50 d.The protection layer can effectively reduce the unloading relaxation depth by approximately 20%.
文摘In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.
文摘脱硫过程是具有高度动态非线性和较大延迟时间的复杂工业过程,为了解决烟气脱硫过程的建模问题,设计了注意力机制下的深度长短期记忆(attention mechanism-based long short-term memory,AttLSTM)网络,并基于该网络设计自动编码器,完成脱硫过程异常点的检测。该文首次提出使用AttLSTM网络自编码器对脱硫过程进行离群点检测,并且该网络模型同样首次应用于脱硫过程的辨识任务中。从更深的意义上讲,该文尝试使用深度学习模型对复杂系统进行辨识,所建立的AttLSTM网络之前未出现在系统辨识领域,该网络的出现可以丰富辨识模型的选择,同时为人工智能技术在系统辨识领域和控制领域的应用与推广提供参考。实验结果表明,相比于之前文献出现的脱硫过程建模方法,所提方法在不同性能指标上均具有更好的表现,由此可以证明深度AttLSTM网络在脱硫场景下的有效性。