In the context of robot soccer, the robots have to select actions to achieve individual and team goals in the dynamic environment. It is important for a robot to acquire navigation behaviors for avoiding other robots ...In the context of robot soccer, the robots have to select actions to achieve individual and team goals in the dynamic environment. It is important for a robot to acquire navigation behaviors for avoiding other robots and obstacles in the real time environment. This paper suggested an efficient approach to collision avoidance in multi robot system. This approach is based on velocity information of moving objects and the distance between robot and obstacle in three specified directions. The main contribution of this paper is that it provides a method for robots with decreased computational cost and makes the robot navigate without collision with each other in a complicated environment.展开更多
To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathem...To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.展开更多
This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles a...This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles are detected online and a 2D local obstacle grid map is constructed at 10 Hz/s.The A^*path finding algorithm is employed to generate a local path in this local obstacle grid map by considering both the target position and obstacles.The vehicle avoids obstacles under the guidance of the generated local path.Experiment results have shown the effectiveness of the obstacle avoidance navigation algorithm proposed.展开更多
Monocular vision-based navigation is a considerable ability for a home mobile robot. However, due to diverse disturbances, helping robots avoid obstacles, especially nonManhattan obstacles, remains a big challenge. In...Monocular vision-based navigation is a considerable ability for a home mobile robot. However, due to diverse disturbances, helping robots avoid obstacles, especially nonManhattan obstacles, remains a big challenge. In indoor environments, there are many spatial right-corners that are projected into two dimensional projections with special geometric configurations. These projections, which consist of three lines,might enable us to estimate their position and orientation in 3 D scenes. In this paper, we present a method for home robots to avoid non-Manhattan obstacles in indoor environments from a monocular camera. The approach first detects non-Manhattan obstacles. Through analyzing geometric features and constraints,it is possible to estimate posture differences between orientation of the robot and non-Manhattan obstacles. Finally according to the convergence of posture differences, the robot can adjust its orientation to keep pace with the pose of detected non-Manhattan obstacles, making it possible avoid these obstacles by itself. Based on geometric inferences, the proposed approach requires no prior training or any knowledge of the camera’s internal parameters,making it practical for robots navigation. Furthermore, the method is robust to errors in calibration and image noise. We compared the errors from corners of estimated non-Manhattan obstacles against the ground truth. Furthermore, we evaluate the validity of convergence of differences between the robot orientation and the posture of non-Manhattan obstacles. The experimental results showed that our method is capable of avoiding non-Manhattan obstacles, meeting the requirements for indoor robot navigation.展开更多
In the multi-robots system, it's important for a robot to acquire adaptivenavigation rules for reaching the goal and avoiding other robots and obstacles and in the real-timeenvironment. An efficient approach to co...In the multi-robots system, it's important for a robot to acquire adaptivenavigation rules for reaching the goal and avoiding other robots and obstacles and in the real-timeenvironment. An efficient approach to collision-avoidance in multi-robots system is suggested . Itis based on velocity information of moving objects and the distances between the robots and theobstacles in three specified directions and makes the robot navigate adaptively without collisionwith each other in a complicated situation. The effectiveness of algorithm is proved by the severalsimple examples in the physical world.展开更多
文摘In the context of robot soccer, the robots have to select actions to achieve individual and team goals in the dynamic environment. It is important for a robot to acquire navigation behaviors for avoiding other robots and obstacles in the real time environment. This paper suggested an efficient approach to collision avoidance in multi robot system. This approach is based on velocity information of moving objects and the distance between robot and obstacle in three specified directions. The main contribution of this paper is that it provides a method for robots with decreased computational cost and makes the robot navigate without collision with each other in a complicated environment.
基金Project(60475035) supported by the National Natural Science Foundation of China
文摘To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.
基金the National Natural Science Foundation of China(No.51577112,51575328)Science and Technology Commission of Shanghai Municipality Project(No.16511108600).
文摘This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles are detected online and a 2D local obstacle grid map is constructed at 10 Hz/s.The A^*path finding algorithm is employed to generate a local path in this local obstacle grid map by considering both the target position and obstacles.The vehicle avoids obstacles under the guidance of the generated local path.Experiment results have shown the effectiveness of the obstacle avoidance navigation algorithm proposed.
基金supported by the National Natural Science Foundation of China(61771146,61375122)the National Thirteen 5-Year Plan for Science and Technology(2017YFC1703303)in part by Shanghai Science and Technology Development Funds(13dz2260200,13511504300)。
文摘Monocular vision-based navigation is a considerable ability for a home mobile robot. However, due to diverse disturbances, helping robots avoid obstacles, especially nonManhattan obstacles, remains a big challenge. In indoor environments, there are many spatial right-corners that are projected into two dimensional projections with special geometric configurations. These projections, which consist of three lines,might enable us to estimate their position and orientation in 3 D scenes. In this paper, we present a method for home robots to avoid non-Manhattan obstacles in indoor environments from a monocular camera. The approach first detects non-Manhattan obstacles. Through analyzing geometric features and constraints,it is possible to estimate posture differences between orientation of the robot and non-Manhattan obstacles. Finally according to the convergence of posture differences, the robot can adjust its orientation to keep pace with the pose of detected non-Manhattan obstacles, making it possible avoid these obstacles by itself. Based on geometric inferences, the proposed approach requires no prior training or any knowledge of the camera’s internal parameters,making it practical for robots navigation. Furthermore, the method is robust to errors in calibration and image noise. We compared the errors from corners of estimated non-Manhattan obstacles against the ground truth. Furthermore, we evaluate the validity of convergence of differences between the robot orientation and the posture of non-Manhattan obstacles. The experimental results showed that our method is capable of avoiding non-Manhattan obstacles, meeting the requirements for indoor robot navigation.
文摘In the multi-robots system, it's important for a robot to acquire adaptivenavigation rules for reaching the goal and avoiding other robots and obstacles and in the real-timeenvironment. An efficient approach to collision-avoidance in multi-robots system is suggested . Itis based on velocity information of moving objects and the distances between the robots and theobstacles in three specified directions and makes the robot navigate adaptively without collisionwith each other in a complicated situation. The effectiveness of algorithm is proved by the severalsimple examples in the physical world.