期刊文献+
共找到174,596篇文章
< 1 2 250 >
每页显示 20 50 100
Pharmacological intervention for chronic phase of spinal cord injury
1
作者 Chihiro Tohda 《Neural Regeneration Research》 SCIE CAS 2025年第5期1377-1389,共13页
Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challengin... Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury–specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research(in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc(AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide,(-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury. 展开更多
关键词 axonal growth chronic phase clinical study PHARMACOTHERAPY spinal cord injury
下载PDF
Low‑Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption
2
作者 Zizhuang He Lingzi Shi +6 位作者 Ran Sun Lianfei Ding Mukun He Jiaming Li Hua Guo Tiande Gao Panbo Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期191-204,共14页
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan... Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption. 展开更多
关键词 Magnetic heterointerfaces phase evolution Interfacial polarization Magnetic coupling Electromagnetic wave absorption
下载PDF
Achieving high strength-ductility synergy in a Mg_(97)Y_(1)Zn_(1)Ho_(1) alloy via a nano-spaced long-period stacking-ordered phase 被引量:4
3
作者 Mingyu Fan Ye Cui +5 位作者 Yang Zhang Xinghao Wei Xue Cao Peter K.Liaw Yuansheng Yang Zhongwu Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1321-1331,共11页
Achieving high strength in Mg alloys is usually accompanied by ductility loss.Here,a novel Mg97Y1Zn1Ho1 at.%alloy with a yield strength of 403 MPa and an elongation of 10%is developed.The strength-ductility synergy is... Achieving high strength in Mg alloys is usually accompanied by ductility loss.Here,a novel Mg97Y1Zn1Ho1 at.%alloy with a yield strength of 403 MPa and an elongation of 10%is developed.The strength-ductility synergy is obtained by a comprehensive strategy,including a lamella bimodal microstructure design and the introduction of nano-spaced solute-segregated 14H long-period stacking-ordered phase(14H LPSO phase)through rare-earth Ho alloying.The lamella bimodal microstructure consists of elongated un-recrystallized(un-DRXed)coarse grains and fine dynamically-recrystallized grains(DRXed regions).The nano-spaced solute-segregated 14H LPSO phase is distributed in DRXed regions.The outstanding yield strength is mainly contributed by grain-boundary strengthening,18R LPSO strengthening,and fiberlike reinforcement strengthening from the nano-spaced 14H LPSO phase.The high elongation is due primarily to the combined effects of the bimodal and lamellar microstructures through enhancing the work-hardening capability. 展开更多
关键词 Mg wrought alloy Mechanical properties long-period stacking-ordered(LPSO)phase Age-strengthening behavior Strengthening mechanism
下载PDF
Tensile fracture of as-cast and hot rolled Mg-Zn-Y alloy with long-period stacking phase 被引量:1
4
作者 王柏树 熊守美 刘勇兵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期488-492,共5页
An experimental Mg97Zn1Y2(molar fraction,%)alloy was produced by rolling the as-cast alloy.The microstructure of the alloy is composed of theα-Mg(also marked as 2H-Mg with reference to long-period stacking structure ... An experimental Mg97Zn1Y2(molar fraction,%)alloy was produced by rolling the as-cast alloy.The microstructure of the alloy is composed of theα-Mg(also marked as 2H-Mg with reference to long-period stacking structure according to hexagonal close packed structure)and long-period stacking(LPS)phase.Tensile tests of Mg97Zn1Y2 alloy in comparison with pure Mg were conducted.The fracture morphologies of the tensile specimens were characterized and the microstructures near fracture surface were observed.The results show that the rolled Mg97Zn1Y2 alloy shows a mixed fracture mode including dimples indicating a ductile fracture pattern and a small fraction of cleavage planes indicating a brittle fracture pattern,which is different from the single brittle fracture of the as-cast alloy.In addition,the plastic deformation is mainly from dislocations induced strain with small strengthening effect during plastic deformation in the as-cast Mg97Zn1Y2 alloy,and the strain hardening rate is similar to that of the as-cast pure magnesium.The deformation mechanism of Mg97Zn1Y2 alloy is different from that of the pure magnesium according to a metallographical observation that whether twins are found or not.The strengthening effect hardly exists in the rolled Mg97Zn1Y2 alloy under the same dislocations induced strain,which is different from that of the as-cast alloy with moderate strengthening effect. 展开更多
关键词 magnesium-yttrium-zinc alloy long-period stacking phase rolling mechanical properties fracture
下载PDF
基于CTA颅内动脉瘤形态联合PHASES评分对破裂出血预测研究
5
作者 王金泉 黄吉淮 谢颖 《影像研究与医学应用》 2024年第4期31-34,共4页
目的:分析头颈部计算机断层扫描血管成像(CTA)联合PHASES评分对颅内动脉瘤(IA)破裂出血的预测价值。方法:回顾性分析2021年10月—2023年9月东莞市长安医院诊治的IA患者临床资料,根据IA破裂出血与否分为IA破裂组(n=46)和IA未破裂组(n=44)... 目的:分析头颈部计算机断层扫描血管成像(CTA)联合PHASES评分对颅内动脉瘤(IA)破裂出血的预测价值。方法:回顾性分析2021年10月—2023年9月东莞市长安医院诊治的IA患者临床资料,根据IA破裂出血与否分为IA破裂组(n=46)和IA未破裂组(n=44),收集两组临床资料,对比两组患者CTA影像瘤体特征参数和PHASES评分结果。采用受试者工作特征(ROC)曲线分析两者联合预测动脉瘤破裂的效能。结果:IA破裂组高血压、糖尿病发生率及PHASES评分均高于IA未破裂组,差异有统计学意义(P <0.05)。两组病灶位置以颈内动脉(ICA)和大脑中动脉(MCA)为主,但IA破裂组病灶位置在MCA的占比为41.30%,高于IA未破裂组的20.45%,瘤体>7 mm的最多(瘤体7~9.9 mm占65.22%),瘤体形态不规则占58.7%,未破裂组病灶位置在ICA最多(68.18%),瘤体<7 mm的居多(75.00%),瘤体形态规则囊状动脉瘤占93.18%,差异有统计学意义(P <0.05)。CTA瘤体特征参数比较,IA破裂组患者瘤颈宽度、瘤体高度、瘤体长度、动脉瘤最大直径、入射夹角、动脉瘤体颈比等参数均高于IA未破裂组,差异有统计学意义(P <0.05)。CTA瘤体特征参数+PHASES评分联合预测曲线下面积为0.916,高于CTA瘤体特征参数(0.901)和PHASES评分(0.731)。结论:CTA瘤体特征参数+PHASES评分联合预测IA患者破裂出血效能最佳。 展开更多
关键词 颅内动脉瘤 破裂出血 CTA phaseS评分
下载PDF
Thermodynamic assessment of Mg-Ni-Y system focusing on long-period stacking ordered phases in the Mg-rich corner 被引量:3
6
作者 Cheng Liu Qun Luo +2 位作者 Qin-Fen Gu Qian Li Kuo-Chih Chou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第11期3250-3266,共17页
The long-period stacking ordered phases(LPSOs) in Mg-Ni-Y system have been attracting great interest as effective strengthening components because of their unique structural characteristics and deformation mechanism.H... The long-period stacking ordered phases(LPSOs) in Mg-Ni-Y system have been attracting great interest as effective strengthening components because of their unique structural characteristics and deformation mechanism.However,the phase relationships in LPSOs are complicated and unclear,which restricts the design of advanced magnesium-based alloys.The aim of the present work is to experimentally determine the phase equilibria relationships focusing on LPSOs and establish the thermodynamic description for Mg-Ni-Y system.Four types of LPSOs,that is,14H,12R,18R and 10H,are confirmed through equilibrated alloys and high-resolution transmission electron microscopy(HR-TEM).The formation enthalpies of LPSOs(14H,12R,18R and 10H) are calculated based on density functional theories(DFT) calculations.A new ternary compound,termed as τ phase,is observed for the first time which is likely to be the distorted structure of 12R as determined from the TEM image which shows a 12-layer closed packing plane distance of 3.252nm and a shear angle of 83.2°between(0002) and(10■0) planes.Based on the determined phase equilibria relationship,the Mg-Ni-Y system is assessed and a selfconsistent description is obtained where the LPSOs are modeled as the stoichiometric compounds.The comparison between the calculation result and experimental data suggests the accuracy of the present thermodynamic database in the Mg-rich corner. 展开更多
关键词 LPSO phases Crystal structures phase equilibria THERMODYNAMICS
下载PDF
Elucidating the evolution of long-period stacking ordered phase and its effect on deformation behavior in the as-cast Mg-6Gd-1Zn-0.6Zr alloy
7
作者 Sangwon Lee Yejun Park +4 位作者 Jongbin Go Young Mok Kim Seok Su Sohn Jiehua Li Pyuck-Pa Choi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2801-2810,共10页
Herein,the evolution of long-period stacking ordered(LPSO)phases in the as-cast Mg-6Gd-1Zn-0.6Zr(wt.%)alloy are investigated via transmission electron microscopy(TEM)and atom probe tomography(APT).The TEM results reve... Herein,the evolution of long-period stacking ordered(LPSO)phases in the as-cast Mg-6Gd-1Zn-0.6Zr(wt.%)alloy are investigated via transmission electron microscopy(TEM)and atom probe tomography(APT).The TEM results reveal that two types of LPSO phase(a bulky interdendritic phase and a plate-like matrix LPSO phase)are formed in the as-cast sample.Most of the LPSO phases are confirmed to be of the 14H type,with a smaller proportion being of the 18R LPSO.Further,the APT results reveal that the composition of the interdendritic LPSO phase is closer to that of the ideal 14H phase compared to the matrix LPSO phase,and both the interdendritic and matrix LPSO phases exhibit a Gd/Zn ratio of 2.5,thereby indicating a deficient Zn content compared to the ideal 14H phase(i.e.,1.3).In addition,the influence of the LPSO phases on the deformation behavior is investigated at different compressive plastic strains using electron backscatter diffraction(EBSD)analysis to reveal twinning and slip behavior during deformation.The results indicate that the LPSO phase induces additional work hardening in the late stage of deformation via the suppression of{1011}compressive twinning and the activation of non-basal slip systems. 展开更多
关键词 Magnesium alloy long-period stacking ordered phase Transmission electron microscopy Atom probe tomography Work hardening behavior
下载PDF
Effect of long-period stacking ordered phase on hot tearing susceptibility of Mg-lZn-xY alloys 被引量:1
8
作者 Ye Zhou Pingli Mao +3 位作者 Le Zhou Zhi Wang Feng Wang Zheng Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期1176-1185,共10页
The effect of long-period stacking ordered(LPSO)phase on hot tearing susceptibility of Mg-1 Zn-xY serial alloys were investigated experimentally using a home-made T-type hot tearing mold.The characteristic parameters ... The effect of long-period stacking ordered(LPSO)phase on hot tearing susceptibility of Mg-1 Zn-xY serial alloys were investigated experimentally using a home-made T-type hot tearing mold.The characteristic parameters related to HTS during the solidification process were calculated by thermal analysis.The microstructure and morphology of the crack zone were characterized by optical microscope(OM),scanning electron microscopy(SEM)and electron dispersive spectrometer(EDS),and the phases of the alloys were analyzed by X-ray diffraction(XRD).The result showed that the long-period stacking ordered(LPSO)phase formed when m(Zn)/m(Y)<1,and the LPSO content increased with increasing of Y.The presence of the LPSO phase in Mg-lZn-xY alloys could benefit the hot tearing refilling and decrease the HTS of the alloys.With in creasing the content of LPSO phase,the HTS of the alloys decreased.LPSO phase increased the skeleton strength,and reduced the HTS of Mg-lZn-xY alloys. 展开更多
关键词 Mg-Zn-Y alloys Hot tearing susceptibility Thermal analysis LPSO phase Numerical simulation
下载PDF
Transformation of long-period stacking ordered structures in Mg-Gd-Y-Zn alloys upon synergistic characterization of first-principles calculation and experiment and its effects on mechanical properties 被引量:1
9
作者 Mingyu Li Guangzong Zhang +4 位作者 Siqi Yin Changfeng Wang Ying Fu Chenyang Gu Renguo Guan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1867-1879,共13页
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process... Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed. 展开更多
关键词 Mg-Gd-Y-Zn alloys long-period stacking ordered First-principles calculations ENTHALPIES Mechanical properties
下载PDF
Seismic response of a mid-story isolated structure considering SSI in mountainous areas under long-period earthquakes 被引量:1
10
作者 Wan Feng Qin Shengwu +7 位作者 Liu Dewen Zhao Tiange Zheng Yanping Shan Hang Li Zhiang Peng Fusong Xu Jingran Lei Min 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期151-161,共11页
At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is es... At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures. 展开更多
关键词 SSI in mountainous areas long-period earthquakes mid-story isolated structure structural dynamic analysis
下载PDF
Phase-engineering modulation of Mn-based oxide cathode for constructing super-stable sodium storage 被引量:1
11
作者 Quanqing Zhao Ruru Wang +5 位作者 Ming Gao Bolin Liu Jianfeng Jia Haishun Wu Youqi Zhu Chuanbao Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期421-427,I0010,共8页
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ... The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries. 展开更多
关键词 Sodium ion battery Oxide cathode phase engineering phase diagram Na~+kinetic
下载PDF
Recent advances in graphene-based phase change composites for thermal energy storage and management 被引量:2
12
作者 Qiang Zhu Pin Jin Ong +4 位作者 Si Hui Angela Goh Reuben J.Yeo Suxi Wang Zhiyuan Liu Xian Jun Loh 《Nano Materials Science》 EI CAS CSCD 2024年第2期115-138,共24页
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ... Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized. 展开更多
关键词 phase change material NANOCOMPOSITES Solar energy Sustainable energy Thermo-regulation
下载PDF
Phase separation and transcriptional regulation in cancer development 被引量:1
13
作者 Yan Gu Ke Wei Jun Wang 《Journal of Biomedical Research》 CAS CSCD 2024年第4期307-321,共15页
Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biol... Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development. 展开更多
关键词 phase separation transcription regulation CANCER super-enhancer CONDENSATES
下载PDF
Shikimic acid accelerates phase change and flowering in Chinese jujube 被引量:1
14
作者 Xianwei Meng Zhiguo Liu +11 位作者 Li Dai Weiqiang Zhao Jiurui Wang Lili Wang Yuanpei Cui Ying Li Yinshan Cui Yao Zhang Luyao Wang Fengjiao Yu Jin Zhao Mengjun Liu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期413-424,共12页
The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely un... The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties. 展开更多
关键词 Ziziphus jujuba Mill. phase change FLOWERING Shikimic acid TRANSCRIPTOME METABOLOME
下载PDF
Self‑Assembly of Binderless MXene Aerogel for Multiple‑Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding 被引量:1
15
作者 Chuanbiao Zhu Yurong Hao +8 位作者 Hao Wu Mengni Chen Bingqing Quan Shuang Liu Xinpeng Hu Shilong Liu Qinghong Ji Xiang Lu Jinping Qu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期367-382,共16页
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here... The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs. 展开更多
关键词 Self-assembly Multiple-scenario phase change composites Thermal energy storage Electromagnetic interference shielding
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
16
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
A new insight into LPSO phase transformation and mechanical properties uniformity of large-scale Mg-Gd-Y-Zn-Zr alloy prepared by multi-pass friction stir processing 被引量:1
17
作者 Xiaohu Guan Wen Wang +7 位作者 Ting Zhang Pai Peng Qiang Liu Peng Han Ke Qiao Jun Cai Liqiang Wang Kuaishe Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2041-2056,共16页
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri... A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate. 展开更多
关键词 Friction stir processing MULTI-PASS Mg-Gd-Y-Zn-Zr alloy LPSO phase transformation Mechanical properties
下载PDF
Crystal structure,phase transitions,and thermodynamic properties of magnesium metavanadate(MgV_(2)O_(6)) 被引量:1
18
作者 Guishang Pei Cheng Pan +2 位作者 Dapeng Zhong Junyi Xiang Xuewei Lv 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1449-1460,共12页
As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile... As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures. 展开更多
关键词 MgV_(2)O_(6) Crystal structure phase transitions Thermodynamic functions
下载PDF
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation 被引量:1
19
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 Inorganic phase change material Carbon nanotube Battery thermal management Thermal runaway propagation Fire resistance ENCAPSULATION
下载PDF
Transient liquid phase bonding of DD5 superalloy using a designed interlayer: microstructure and mechanical properties 被引量:1
20
作者 周昌杰 范骁乐 +3 位作者 朱立华 陈闯 贺建超 计红军 《China Welding》 CAS 2024年第2期1-10,共10页
Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmen... Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmental service are inevitable challenges for turbine blades.Therefore,bonding techniques play a very important role in the manufacturing and repair of turbine blades.The transient liquid phase(TLP)bonding of DD5 Ni-based single crystal superalloy was performed using the designed H1 interlayer.A new third-generation Ni-based superalloy T1 powder was mixed with H1 powder as another interlayer to improve the mechanical properties of the bonded joints.The res-ults show that,such a designed H1 interlayer is beneficial to the improvement of shear strength of DD5 alloy bonded joints by adjusting the bonding temperature and the prolongation of holding time.The maximum shear strength at room temperature of the joint with H1 interlayer reached 681 MPa when bonded at 1260℃for 3 h.The addition of T1 powder can effectively reduce holding time or relatively lower bond-ing temperature,while maintaining relatively high shear strength.When 1 wt.%T1 powder was mixed into H1 interlayer,the maximum room temperature shear strength of the joint bonded at 1260℃reached 641 MPa,which could be obtained for only 1 h.Considering the bonding temperature and the efficiency,the acceptable process parameter of H1+5 wt.%T1 interlayer was 1240℃/2 h,and the room tem-perature shear strength reached 613 MPa. 展开更多
关键词 Ni-based superalloy powder transient liquid phase bonded joint shear strength
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部