针对当前动作识别过程中忽略了场景的语义信息,易受视角变换与遮挡的影响,导致识别率不高等问题,提出了一种基于动态时间规整耦合3D运动历史图像的人体动作识别算法。首先,结合人体的空间位置、运动方向和速度等不同特征,利用多维最长...针对当前动作识别过程中忽略了场景的语义信息,易受视角变换与遮挡的影响,导致识别率不高等问题,提出了一种基于动态时间规整耦合3D运动历史图像的人体动作识别算法。首先,结合人体的空间位置、运动方向和速度等不同特征,利用多维最长公共子序列(Multi-Dimensional Longest Common Subsequence,MDLCS),对视频数据中的行人目标进行跟踪,提取目标的运动轨迹。然后,基于频谱映射理论,对得到的轨迹实施聚类,并计算运动轨迹的聚类中心。通过对聚类结果执行ROI划分和提取,获取场景的语义上下文信息。再引入动态时间规整(Dynamic Time Warping,DTW),将输入的视频序列与聚类中心进行比较,消除异常与冗余动作信息。随后,计算轨迹段的起点、终点与工作区的ROI之间的位置关系,结合场景的语义上下文信息,采用基于颜色和深度信息的3D运动历史图像(3D Motion History Image,3D-MHI)来提取动作特征。最后,利用支持向量机(Support Vector Machine,SVM)对3D-MHI动作特征进行分类学习,完成对人体动作的识别。实验表明:所提算法在UCF Sport与Hollywood数据集上的识别率分别达到了95.1%和92.5%,与当前流行的动作识别算法比较,具有更高的识别率与较强的鲁棒性,对视角变换与遮挡等复杂场景下的动作识别更为有效。展开更多
为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进...为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进行相似性测量,然后采用改进的LCSS算法对轨迹的方向信息进行相似性测量。与其他轨迹聚类算法不同,该算法融合了Hausdorff距离和LCSS两种算法的优点,提高了轨迹分类的准确性。此外,为了进一步降低计算复杂度,该文还实现了一种基于插值的保距变换算法和一种LCSS快速算法。实验结果表明,该轨迹分类算法可以明显提高轨迹的聚类准确率,聚类准确率可达到96%;基于插值的保距变换算法和LCSS快速算法可以很大程度上降低算法的计算复杂度,下降幅度最大可达到80%。该方法可以同时满足轨迹分类对精确度、实时性和鲁棒性的要求。展开更多
高效求解2个字符串的最长公共子串(Longest Common Substring)是实现很多字符串算法的关键。文中首先给出了求解LCP问题的动态规划算法,广义后缀树算法,研究并分析了这两种算法,得出动态规划算法易于理解,但时间复杂度较高;广义后缀树...高效求解2个字符串的最长公共子串(Longest Common Substring)是实现很多字符串算法的关键。文中首先给出了求解LCP问题的动态规划算法,广义后缀树算法,研究并分析了这两种算法,得出动态规划算法易于理解,但时间复杂度较高;广义后缀树算法的时间复杂度较低,但实现较为复杂并且广义后缀树占用的空间也较多。最后提出了一个新算法,该算法使用2个字符串的广义后缀数组,在保持和广义后缀树时间复杂度相等的基础上,可以简单地实现并且占用较少的空间。展开更多
文摘针对当前动作识别过程中忽略了场景的语义信息,易受视角变换与遮挡的影响,导致识别率不高等问题,提出了一种基于动态时间规整耦合3D运动历史图像的人体动作识别算法。首先,结合人体的空间位置、运动方向和速度等不同特征,利用多维最长公共子序列(Multi-Dimensional Longest Common Subsequence,MDLCS),对视频数据中的行人目标进行跟踪,提取目标的运动轨迹。然后,基于频谱映射理论,对得到的轨迹实施聚类,并计算运动轨迹的聚类中心。通过对聚类结果执行ROI划分和提取,获取场景的语义上下文信息。再引入动态时间规整(Dynamic Time Warping,DTW),将输入的视频序列与聚类中心进行比较,消除异常与冗余动作信息。随后,计算轨迹段的起点、终点与工作区的ROI之间的位置关系,结合场景的语义上下文信息,采用基于颜色和深度信息的3D运动历史图像(3D Motion History Image,3D-MHI)来提取动作特征。最后,利用支持向量机(Support Vector Machine,SVM)对3D-MHI动作特征进行分类学习,完成对人体动作的识别。实验表明:所提算法在UCF Sport与Hollywood数据集上的识别率分别达到了95.1%和92.5%,与当前流行的动作识别算法比较,具有更高的识别率与较强的鲁棒性,对视角变换与遮挡等复杂场景下的动作识别更为有效。
文摘为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进行相似性测量,然后采用改进的LCSS算法对轨迹的方向信息进行相似性测量。与其他轨迹聚类算法不同,该算法融合了Hausdorff距离和LCSS两种算法的优点,提高了轨迹分类的准确性。此外,为了进一步降低计算复杂度,该文还实现了一种基于插值的保距变换算法和一种LCSS快速算法。实验结果表明,该轨迹分类算法可以明显提高轨迹的聚类准确率,聚类准确率可达到96%;基于插值的保距变换算法和LCSS快速算法可以很大程度上降低算法的计算复杂度,下降幅度最大可达到80%。该方法可以同时满足轨迹分类对精确度、实时性和鲁棒性的要求。
文摘高效求解2个字符串的最长公共子串(Longest Common Substring)是实现很多字符串算法的关键。文中首先给出了求解LCP问题的动态规划算法,广义后缀树算法,研究并分析了这两种算法,得出动态规划算法易于理解,但时间复杂度较高;广义后缀树算法的时间复杂度较低,但实现较为复杂并且广义后缀树占用的空间也较多。最后提出了一个新算法,该算法使用2个字符串的广义后缀数组,在保持和广义后缀树时间复杂度相等的基础上,可以简单地实现并且占用较少的空间。
文摘基音检测是音频分析和基于内容的音乐检索中的关键技术,是基于内容音乐检索中实现哼唱检索的基础。提出一种改进的自相关函数(autocorrelation function,ACF)方法进行基音检测。从对音频信号进行去噪预处理、清浊音判断及后处理等方面对ACF进行改进,使之能够生成规整的音高变化曲线。在音乐检索的实现中,提出一种有限长度的最长公共子序列(Local Longest Common String,LLCS)方法,该方法可有效解决传统方法存在的误检问题。开发实现了一个通过哼唱/歌唱进行歌曲检索的原型系统。对大量的歌曲哼唱的实验表明,提出的改进ACF算法和LLCS算法对于提高检索正确率是正确有效的。