期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
ROBUST ESTIMATION IN PARTIAL LINEAR MIXED MODEL FOR LONGITUDINAL DATA
1
作者 秦国友 朱仲义 《Acta Mathematica Scientia》 SCIE CSCD 2008年第2期333-347,共15页
In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under so... In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under some regular conditions, the asymptotic properties of the estimators are obtained. To avoid the computation of high-dimensional integral, a robust Monte Carlo Newton-Raphson algorithm is used. Some simulations are carried out to study the performance of the proposed robust estimators. In addition, the authors also study the robustness and the efficiency of the proposed estimators by simulation. Finally, two real longitudinal data sets are analyzed. 展开更多
关键词 generalized estimating equation longitudinal data metropolis algorithm mixed effect partial linear model ROBUSTNESS
下载PDF
Automatic Variable Selection for High-Dimensional Linear Models with Longitudinal Data 被引量:1
2
作者 Ruiqin Tian Liugen Xue 《Open Journal of Statistics》 2014年第1期38-48,共11页
High-dimensional longitudinal data arise frequently in biomedical and genomic research. It is important to select relevant covariates when the dimension of the parameters diverges as the sample size increases. We cons... High-dimensional longitudinal data arise frequently in biomedical and genomic research. It is important to select relevant covariates when the dimension of the parameters diverges as the sample size increases. We consider the problem of variable selection in high-dimensional linear models with longitudinal data. A new variable selection procedure is proposed using the smooth-threshold generalized estimating equation and quadratic inference functions (SGEE-QIF) to incorporate correlation information. The proposed procedure automatically eliminates inactive predictors by setting the corresponding parameters to be zero, and simultaneously estimates the nonzero regression coefficients by solving the SGEE-QIF. The proposed procedure avoids the convex optimization problem and is flexible and easy to implement. We establish the asymptotic properties in a high-dimensional framework where the number of covariates increases as the number of cluster increases. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. 展开更多
关键词 Variable Selection Diverging Number of Parameters longitudinal data QUADRATIC INFERENCE FUNCTIONS generalized ESTIMATING equation
下载PDF
Empirical Likelihood Based Longitudinal Data Analysis 被引量:1
3
作者 Tharshanna Nadarajah Asokan Mulayath Variyath J Concepción Loredo-Osti 《Open Journal of Statistics》 2020年第4期611-639,共29页
In longitudinal data analysis, our primary interest is in the estimation of regression parameters for the marginal expectations of the longitudinal responses, and the longitudinal correlation parameters are of seconda... In longitudinal data analysis, our primary interest is in the estimation of regression parameters for the marginal expectations of the longitudinal responses, and the longitudinal correlation parameters are of secondary interest. The joint likelihood function for longitudinal data is challenging, particularly due to correlated responses. Marginal models, such as generalized estimating equations (GEEs), have received much attention based on the assumption of the first two moments of the data and a working correlation structure. The confidence regions and hypothesis tests are constructed based on the asymptotic normality. This approach is sensitive to the misspecification of the variance function and the working correlation structure which may yield inefficient and inconsistent estimates leading to wrong conclusions. To overcome this problem, we propose an empirical likelihood (EL) procedure based on a set of estimating equations for the parameter of interest and discuss its <span style="font-family:Verdana;">characteristics and asymptotic properties. We also provide an algorithm base</span><span style="font-family:Verdana;">d on EL principles for the estimation of the regression parameters and the construction of its confidence region. We have applied the proposed method in two case examples.</span> 展开更多
关键词 longitudinal data generalized Estimating equations Empirical Likelihood Adjusted Empirical Likelihood Extended Empirical Likelihood
下载PDF
Empirical Likelihood for Generalized Linear Models with Longitudinal Data
4
作者 YIN Changming AI Mingyao +1 位作者 CHEN Xia KONG Xiangshun 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第5期2100-2124,共25页
Generalized linear models are usually adopted to model the discrete or nonnegative responses.In this paper,empirical likelihood inference for fixed design generalized linear models with longitudinal data is investigat... Generalized linear models are usually adopted to model the discrete or nonnegative responses.In this paper,empirical likelihood inference for fixed design generalized linear models with longitudinal data is investigated.Under some mild conditions,the consistency and asymptotic normality of the maximum empirical likelihood estimator are established,and the asymptotic χ^(2) distribution of the empirical log-likelihood ratio is also obtained.Compared with the existing results,the new conditions are more weak and easy to verify.Some simulations are presented to illustrate these asymptotic properties. 展开更多
关键词 Empirical likelihood ratio generalized linear model longitudinal data maximum empirical likelihood estimator
原文传递
纵向多分类数据的广义估计方程分析
5
作者 尹长明 代文昊 尹露阳 《应用数学》 北大核心 2024年第1期251-257,共7页
广义估计方程(GEE)是分析纵向数据的常用方法.如果响应变量的维数是一,XIE和YANG(2003)及WANG(2011)分别研究了协变量维数是固定的和协变量维数趋于无穷时,GEE估计的渐近性质.本文研究纵向多分类数据(multicategorical data)的GEE建模和... 广义估计方程(GEE)是分析纵向数据的常用方法.如果响应变量的维数是一,XIE和YANG(2003)及WANG(2011)分别研究了协变量维数是固定的和协变量维数趋于无穷时,GEE估计的渐近性质.本文研究纵向多分类数据(multicategorical data)的GEE建模和GEE估计的渐近性质.当数据的分类数大于二时,响应变量的维数大于一,所以推广了文献的相关结果. 展开更多
关键词 属性数据 纵向数据 广义估计方程 高维协变量
下载PDF
含有测量误差与缺失值的纵向数据亚组分析方法的模拟研究
6
作者 薛雅心 秦国友 《中国卫生统计》 CSCD 北大核心 2024年第1期12-17,共6页
目的 研究可以同时处理协变量含有测量误差和响应变量含有缺失值的纵向数据下的亚组分析方法。方法 基于阈值回归模型进行亚组分析;利用重复测量之间的独立性来处理测量误差,并引入逆概率加权来处理缺失值,从而构造一个新的广义渐近无... 目的 研究可以同时处理协变量含有测量误差和响应变量含有缺失值的纵向数据下的亚组分析方法。方法 基于阈值回归模型进行亚组分析;利用重复测量之间的独立性来处理测量误差,并引入逆概率加权来处理缺失值,从而构造一个新的广义渐近无偏估计方程。结果 计算机随机模拟显示该估计方法在处理测量误差和缺失数据方面具有良好的效果,相比于未修正测量误差或缺失数据的广义估计方程方法具有更小的偏倚和均方误差。结论 亚组分析中,当协变量存在测量误差、响应变量存在缺失值时,通常需要考虑对测量误差和缺失值进行处理,以便得到可靠的参数估计。 展开更多
关键词 亚组分析 纵向数据 广义估计方程 测量误差 缺失值
下载PDF
A Comparison of Statistical Methods for Analyzing Discrete Hierarchical Data: A Case Study of Family Data on Alcohol Abuse
7
作者 Yuanyuan Liang Keumhee Chough Carriere 《Open Journal of Statistics》 2013年第4期1-6,共6页
Although hierarchical correlated data are increasingly available and are being used in evidence-based medical practices and health policy decision making, there is a lack of information about the strengths and weaknes... Although hierarchical correlated data are increasingly available and are being used in evidence-based medical practices and health policy decision making, there is a lack of information about the strengths and weaknesses of the methods of analysis with such data. In this paper, we describe the use of hierarchical data in a family study of alcohol abuse conducted in Edmonton, Canada, that attempted to determine whether alcohol abuse in probands is associated with abuse in their first-degree relatives. We review three methods of analyzing discrete hierarchical data to account for correlations among the relatives. We conclude that the best analytic choice for typical correlated discrete hierarchical data is by nonlinear mixed effects modeling using a likelihood-based approach or multilevel (hierarchical) modeling using a quasilikelihood approach, especially when dealing with heterogeneous patient data. 展开更多
关键词 NON-LINEAR Mixed Effects model multilevel model generalized Estimating equationS Mantel-Haenszel Odds Ratio SPECIFICITY Sensitivity
下载PDF
A moving average Cholesky factor model in joint mean-covariance modeling for longitudinal data 被引量:4
8
作者 LIU XiaoYu ZHANG WeiPing 《Science China Mathematics》 SCIE 2013年第11期2367-2380,共14页
Modeling the mean and covariance simultaneously is a common strategy to efficiently estimate the mean parameters when applying generalized estimating equation techniques to longitudinal data. In this article, using ge... Modeling the mean and covariance simultaneously is a common strategy to efficiently estimate the mean parameters when applying generalized estimating equation techniques to longitudinal data. In this article, using generalized estimation equation techniques, we propose a new kind of regression models for parameterizing covariance structures. Using a novel Cholesky factor, the entries in this decomposition have moving average and log innovation interpretation and are modeled as the regression coefficients in both the mean and the linear functions of covariates. The resulting estimators for eovarianee are shown to be consistent and asymptotically normally distributed. Simulation studies and a real data analysis show that the proposed approach yields highly efficient estimators for the parameters in the mean, and provides parsimonious estimation for the covariance structure. 展开更多
关键词 moving average factor generalized estimating equation longitudinal data modeling of mean andcovariance structures
原文传递
Local asymptotic behavior of regression splines for marginal semiparametric models with longitudinal data 被引量:2
9
作者 QIN GuoYou ZHU ZhongYi 《Science China Mathematics》 SCIE 2009年第9期1982-1994,共13页
In this paper, we study the local asymptotic behavior of the regression spline estimator in the framework of marginal semiparametric model. Similarly to Zhu, Fung and He (2008), we give explicit expression for the asy... In this paper, we study the local asymptotic behavior of the regression spline estimator in the framework of marginal semiparametric model. Similarly to Zhu, Fung and He (2008), we give explicit expression for the asymptotic bias of regression spline estimator for nonparametric function f. Our results also show that the asymptotic bias of the regression spline estimator does not depend on the working covariance matrix, which distinguishes the regression splines from the smoothing splines and the seemingly unrelated kernel. To understand the local bias result of the regression spline estimator, we show that the regression spline estimator can be obtained iteratively by applying the standard weighted least squares regression spline estimator to pseudo-observations. At each iteration, the bias of the estimator is unchanged and only the variance is updated. 展开更多
关键词 asymptotic bias B-SPLINE generalized estimating equation longitudinal data semiparametric models 62F35 62G08
原文传递
Weighted estimating equation: modified GEE in longitudinal data analysis 被引量:1
10
作者 Tianqing LIU Zhidong BAI Baoxue ZHANG 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第2期329-353,共25页
The method of generalized estimating equations (GEE) introduced by K. Y. Liang and S. L. Zeger has been widely used to analyze longitudinal data. Recently, this method has been criticized for a failure to protect ag... The method of generalized estimating equations (GEE) introduced by K. Y. Liang and S. L. Zeger has been widely used to analyze longitudinal data. Recently, this method has been criticized for a failure to protect against misspecification of working correlation models, which in some cases leads to loss of efficiency or infeasibility of solutions. In this paper, we present a new method named as 'weighted estimating equations (WEE)' for estimating the correlation parameters. The new estimates of correlation parameters are obtained as the solutions of these weighted estimating equations. For some commonly assumed correlation structures, we show that there exists a unique feasible solution to these weighted estimating equations regardless the correlation structure is correctly specified or not. The new feasible estimates of correlation parameters are consistent when the working correlation structure is correctly specified. Simulation results suggest that the new method works well in finite samples. 展开更多
关键词 CONSISTENCY CORRELATION EFFICIENCY (GEE) longitudinal data positive definite estimating equation (WEE) generalized estimating equation repeated measures WEIGHTED
原文传递
基于SAIC方法的纵向数据模型平均
11
作者 王梓屹 《西南师范大学学报(自然科学版)》 CAS 2023年第3期66-73,共8页
传统的SAIC模型平均所需运行时间随数据维数而呈现出阶乘级的增长,其预测精度也随之下降.本文基于传统SAIC模型平均法进行了改进,提出一类基于SAIC加权法的纵向数据模型平均法,使运算效率大幅提升,并且使预测效果拥有良好的稳定性.模拟... 传统的SAIC模型平均所需运行时间随数据维数而呈现出阶乘级的增长,其预测精度也随之下降.本文基于传统SAIC模型平均法进行了改进,提出一类基于SAIC加权法的纵向数据模型平均法,使运算效率大幅提升,并且使预测效果拥有良好的稳定性.模拟实验结果表明,与传统方法相比,在预测残差平方和层面,本文提出的新模型在稳定性、精准性和运行速度方面均优于传统方法. 展开更多
关键词 大数据 赤池信息量准则 模型平均 广义估计方程 S-AIC模型平均
下载PDF
基于动态协方差建模的纵向数据特征筛选方法
12
作者 陈欣悦 《重庆工商大学学报(自然科学版)》 2023年第4期69-76,共8页
为了使统计分析有效进行,特征筛选问题在超高维领域已被众多学者广泛研究;针对现存特征筛选方法不能灵活处理超高维纵向数据的组内相关性问题,提出一个基于动态协方差建模的迭代特征筛选方法,并称之为迭代的动态特征筛选方法;在每次迭... 为了使统计分析有效进行,特征筛选问题在超高维领域已被众多学者广泛研究;针对现存特征筛选方法不能灵活处理超高维纵向数据的组内相关性问题,提出一个基于动态协方差建模的迭代特征筛选方法,并称之为迭代的动态特征筛选方法;在每次迭代过程中,均使用修正的Cholesky分解代替静态协方差矩阵建模方法对纵向数据的组内协方差矩阵进行动态建模,获得灵活的组内协方差矩阵估计,然后将所得估计代入广义估计方程中,并基于广义估计方程特征筛选方法的思想建立特征筛选准则进行筛选,最后当迭代算法收敛时得到最终的筛选子模型;引入随机模拟和酵母细胞周期循环基因表达数据集对迭代的动态特征筛选方法和基于广义估计方程的特征筛选方法以及其他2个经典的独立特征筛选方法进行测试,结果表明:迭代的动态特征筛选方法不仅可以快速地筛选出重要协变量,而且还能够更加灵活地处理纵向数据的组内相关性,拥有更高的筛选精度。 展开更多
关键词 超高维纵向数据 特征筛选 修正的Cholesky分解 广义估计方程 动态协方差建模
下载PDF
Two-step Estimation for Longitudinal Data When the Working Correlation Matrix is a Linear Combination of Some Known Matrices
13
作者 Yu-ling LI Wei GAO +1 位作者 Man-Lai TANG Shu-rong ZHENG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2019年第2期264-273,共10页
The generalized estimating equations(GEE) approach is perhaps one of the most widely used methods for longitudinal data analysis. While the GEE method guarantees the consistency of its estimators under working correla... The generalized estimating equations(GEE) approach is perhaps one of the most widely used methods for longitudinal data analysis. While the GEE method guarantees the consistency of its estimators under working correlation structure misspecification, the corresponding efficiency can be severely affected. In this paper, we propose a new two-step estimation method in which the correlation matrix is assumed to be a linear combination of some known working matrices. Asymptotic properties of the new estimators are developed.Simulation studies are conducted to examine the performance of the proposed estimators. We illustrate the methodology with an epileptic data set. 展开更多
关键词 generalized estimating equations longitudinal data QUADRATIC INFERENCE functions QUASI-LIKELIHOOD TWO-STEP estimation
原文传递
Parsimonious Mean-Covariance Modeling for Longitudinal Data with ARMA Errors
14
作者 WANG Jiangli CHEN Yu ZHANG Weiping 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第6期1675-1692,共18页
Based on the generalized estimating equation approach,the authors propose a parsimonious mean-covariance model for longitudinal data with autoregressive and moving average error process,which not only unites the exist... Based on the generalized estimating equation approach,the authors propose a parsimonious mean-covariance model for longitudinal data with autoregressive and moving average error process,which not only unites the existing autoregressive Cholesky factor model and moving average Cholesky factor model but also provides a wide variety of structures of covariance matrix.The resulting estimators for the regression coefficients in both the mean and the covariance are shown to be consistent and asymptotically normally distributed under mild conditions.The authors demonstrate the effectiveness,parsimoniousness and desirable performance of the proposed approach by analyzing the CD4-I-cell counts data set and conducting extensive simulations. 展开更多
关键词 Autoregressive and moving average generalized estimating equation longitudinal data modified Cholesky decomposition
原文传递
Time-varying latent model for longitudinal data with informative observation and terminal event times
15
作者 PEI YanBo DU Ting SUN LiuQuan 《Science China Mathematics》 SCIE CSCD 2016年第12期2393-2410,共18页
Longitudinal data often occur in follow-up studies, and in many situations, there may exist informative observation times and a dependent terminal event such as death that stops the follow-up. We propose a semiparamet... Longitudinal data often occur in follow-up studies, and in many situations, there may exist informative observation times and a dependent terminal event such as death that stops the follow-up. We propose a semiparametric mixed effect model with time-varying latent effects in the analysis of longitudinal data with informative observation times and a dependent terminal event. Estimating equation approaches are developed for parameter estimation, and asymptotic properties of the resulting estimators are established. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a bladder cancer study is provided. 展开更多
关键词 estimating equations informative observation times joint modeling longitudinal data terminal event time-varying effect
原文传递
纵向观测计数数据的对数线性模型 被引量:7
16
作者 熊林平 曹秀堂 +1 位作者 徐勇勇 郭祖超 《中国卫生统计》 CSCD 北大核心 1999年第2期68-71,共4页
目的纵向观测数据是按时间顺序对个体的某一变量进行多次观测获得的资料。本文利用广义线性模型对纵向计数数据进行了分析,充分考虑重复观测间的相关性。方法采用Zeger和Liang提出的广义估计方程,在拟合对数广义线性模型的... 目的纵向观测数据是按时间顺序对个体的某一变量进行多次观测获得的资料。本文利用广义线性模型对纵向计数数据进行了分析,充分考虑重复观测间的相关性。方法采用Zeger和Liang提出的广义估计方程,在拟合对数广义线性模型的同时,引入偏离参数,讨论三种协方差矩阵的结构。结果同时获得回归参数、相关参数、偏离参数的估计,完成了较为实用的运行程序,并进行了实例讨论。结论医学研究和临床试验中经常接触到纵向观测数据。 展开更多
关键词 纵向数据 计数数据 对数线性模型 卫生统计
下载PDF
不同性别高尿酸血症对空腹血糖受损影响的纵向数据分析 被引量:5
17
作者 刘福荣 武留信 +3 位作者 康晓平 高向阳 陈卓然 代晓彤 《中国卫生统计》 CSCD 北大核心 2015年第3期375-378,共4页
目的探讨不同性别高尿酸血症(hyperuricemia,HUA)对空腹血糖受损(impaired fasting g1ucose,IFG)的影响。方法利用北京某体检中心2008年至2010年连续三年体检人群纵向监测数据,采用广义估计方程(generalized estimating equations,GEE)... 目的探讨不同性别高尿酸血症(hyperuricemia,HUA)对空腹血糖受损(impaired fasting g1ucose,IFG)的影响。方法利用北京某体检中心2008年至2010年连续三年体检人群纵向监测数据,采用广义估计方程(generalized estimating equations,GEE)分析不同性别高尿酸血症对空腹血糖受损的影响。结果本次研究共纳入4425名研究对象,男性2625名,女性1800名。2008年至2010年,男性空腹血糖受损的检出率依次为12.50%、15.39%、13.75%;女性空腹血糖受损的检出率依次为3.39%、5.56%、5.67%。分男女性别拟合GEE模型结果显示,控制时间变量后(模型1),无论男性还是女性高尿酸血症对空腹血糖受损均有影响,男性高尿酸血症组相对于血尿酸正常组OR=1.2580(P=0.0034),女性OR=3.1817(P<0.0001);同时控制时间和年龄变量后(模型2),男性和女性高尿酸血症对空腹血糖受损的影响仍然相同,均有统计学意义;在同时考虑将时间、年龄、体重指数、血压、总胆固醇、甘油三酯、高密度脂蛋白胆固醇、吸烟、饮酒、体力活动等变量作为混杂因素控制后(模型3),男性OR=1.1606,差异无统计学意义(P>0.05);女性OR=1.8647,差异有统计学意义(P<0.01)。结论高尿酸血症对空腹血糖受损的影响可能存在性别差异,仅在女性中发现高尿酸血症对空腹血糖受损有影响。 展开更多
关键词 高尿酸血症 空腹血糖受损 性别 纵向数据 广义估计方程
下载PDF
有序多分类重复测量资料的广义估计方程分析 被引量:6
18
作者 刘祥 张菊英 《四川大学学报(医学版)》 CAS CSCD 北大核心 2006年第5期798-800,共3页
目的探讨广义估计方程在有序多分类重复测量资料中的应用,为临床试验中的重复测量资料的正确分析提供方法学上的参考。方法采用SAS软件包的GENMOD语句拟合广义估计方程,进行实例分析,并和独立logistic回归分析结果进行对比。结果获得了... 目的探讨广义估计方程在有序多分类重复测量资料中的应用,为临床试验中的重复测量资料的正确分析提供方法学上的参考。方法采用SAS软件包的GENMOD语句拟合广义估计方程,进行实例分析,并和独立logistic回归分析结果进行对比。结果获得了各参数及其标准误的估计值,可以对各因素进行直观的参数估计。广义估计方程各参数估计值标准误普遍大于独立logistic回归估计值的标准误,从而使得检验结果发生了变化。结论广义估计方程引入工作相关矩阵以处理非独立数据之间的相关性,可以有效地控制层次相关性、重复测量因素及其它混杂因素,为有序多分类重复测量资料提供了一种有效的分析方法。 展开更多
关键词 广义估计方程 广义线性模型 重复测量 纵向研究
下载PDF
基于广义估计方程的阿尔茨海默病健康相关生命质量影响因素研究 被引量:3
19
作者 杨林 贺润莲 +3 位作者 高彩虹 万利平 宋艳龙 余红梅 《中国卫生统计》 CSCD 北大核心 2014年第4期590-593,共4页
目的研究阿尔茨海默病(Alzheimer’s disease,AD)进程中不同认知转归结局健康相关生命质量(healthrelated quality of life,HRQOL)的主要影响因素。方法将阿尔茨海默病进程中的疾病状态和生命质量相结合,以认知正常老化为状态1、轻度认... 目的研究阿尔茨海默病(Alzheimer’s disease,AD)进程中不同认知转归结局健康相关生命质量(healthrelated quality of life,HRQOL)的主要影响因素。方法将阿尔茨海默病进程中的疾病状态和生命质量相结合,以认知正常老化为状态1、轻度认知障碍为状态2、中重度认知障碍为状态3、阿尔茨海默病为状态4,针对3次随访的纵向资料,引入广义估计方程,研究AD进程中HRQOL随疾病状态转移的影响因素。结果状态1至状态2 HRQOL有统计学意义的影响因素是婚姻、离休前职业、参加娱乐公益活动、吸烟、GDS;状态2至状态3 HRQOL影响因素是婚姻、夫妻关系、出生胎次、参加体育锻炼、一级亲属痴呆、ADL、GDS;状态3至状态4 HRQOL影响因素是教育水平、退休后第二职业、做家务情况、参加体育锻炼、喝茶、一级亲属痴呆、高血脂、GDS;状态3至状态2 HRQOL影响因素是教育水平、离休前职业、业余爱好、喝茶、吸烟、铝制炊具使用、控制食量、脑部疾患、ADL、GDS。结论 AD进程中HRQOL随状态转移的影响因素各有不同,应该根据不同认知转归结局生命质量各自的影响因素,制定疾病分阶段卫生政策,提高老年人生命质量。 展开更多
关键词 阿尔茨海默病 轻度认知损害 健康相关生命质量 纵向数据 广义估计方程
下载PDF
惩罚广义估计方程在纵向数据基因关联分析中的应用 被引量:2
20
作者 曹红艳 曾平 +2 位作者 李治 崔跃华 张岩波 《中国卫生统计》 CSCD 北大核心 2017年第4期534-537,共4页
目的探讨惩罚广义估计方程(pGEE)在纵向数据基因关联分析的应用,为纵向数据基因关联分析提供方法学参考。方法以小鼠糖尿病发病相关的数量性状位点识别为例,分别采用广义估计方程(GEE)和pGEE进行分析。结果 pGEE筛选出糖尿病发病关联位... 目的探讨惩罚广义估计方程(pGEE)在纵向数据基因关联分析的应用,为纵向数据基因关联分析提供方法学参考。方法以小鼠糖尿病发病相关的数量性状位点识别为例,分别采用广义估计方程(GEE)和pGEE进行分析。结果 pGEE筛选出糖尿病发病关联位点,为分子生物学研究提供了重要的候选位点。结论 pGEE能有效的实现高维纵向数据的变量选择,识别出有意义的关联位点。 展开更多
关键词 惩罚广义估计方程 纵向数据 SCAD 基因关联分析 数量性状位点
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部