期刊文献+
共找到477篇文章
< 1 2 24 >
每页显示 20 50 100
“Rigid-elastic chimera” pore skeleton model and overpressure porosity measurement method for shale: A case study of the deep overpressure siliceous shale of Silurian Longmaxi Formation in southern Sichuan Basin, SW China
1
作者 SHI Qiang CHEN Peng 《Petroleum Exploration and Development》 2023年第1期125-137,共13页
Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosi... Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosity due to the pore skeleton deformation under overpressure were sorted out through analysis of stress on the shale pore and skeleton.After reviewing the difficulties and defects of existent porosity measurement methods,a dynamic deformed porosity measurement method was worked out and used to measure the porosity of overpressure Silurian Longmaxi Formation shale under real formation conditions in southern Sichuan Basin.The results show:(1)The shale reservoir is a mixture of inorganic rock particles and organic matter,which contains inorganic pores supported by rigid skeleton particles and organic pores supported by elastic-plastic particles,and thus has a special“rigid elastic chimeric”pore structure.(2)Under the action of formation overpressure,the inorganic pores have tiny changes that can be assumed that they don’t change in porosity,while the organic pores may have large deformation due to skeleton compression,leading to the increase of radius,connectivity and ultimately porosity of these pores.(3)The“dynamic”deformation porosity measurement method combining high injection pressure helium porosity measurement and kerosene porosity measurement method under ultra-high variable pressure can accurately measure porosity of unconnected micro-pores under normal pressure conditions,and also the porosity increment caused by plastic skeleton compression deformation.(4)The pore deformation mechanism of shale may result in the"abnormal"phenomenon that the shale under formation conditions has higher porosity than that under normal pressure,so the overpressure shale reservoir is not necessarily“ultra-low in porosity”,and can have porosity over 10%.Application of this method in Well L210 in southern Sichuan has confirmed its practicality and reliability. 展开更多
关键词 shale gas “rigid-elastic chimera”pore model “dynamic”deformation porosity deep shale layers Silurian longmaxi formation sichuan basin
下载PDF
Porosity, permeability and rock mechanics of Lower Silurian Longmaxi Formation deep shale under temperature-pressure coupling in the Sichuan Basin, SW China 被引量:3
2
作者 SUN Chuanxiang NIE Haikuan +5 位作者 SU Haikun DU Wei LU Ting CHEN Yalin LIU Mi LI Jingchang 《Petroleum Exploration and Development》 2023年第1期85-98,共14页
To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and ... To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and Yongchuan areas of the Sichuan Basin for porosity and permeability experiments and a triaxial compression and sound wave integration experiment at the maximum temperature and pressure of 120 ℃ and 70 MPa. The results show that the microscopic porosity and permeability change and the macroscopic rock deformation are mutually constrained, both showing the trend of steep and then gentle variation. At the maximum temperature and pressure, the porosity reduces by 34%–71%, and the permeability decreases by 85%–97%. With the rising temperature and pressure, deep shale undergoes plastic deformation in which organic pores and clay mineral pores are compressed and microfractures are closed, and elastic deformation in which brittle mineral pores and rock skeleton particles are compacted. Compared with previous experiments under high confining pressure and normal temperature,the experiment under high temperature and high pressure coupling reveals the effect of high temperature on stress sensitivity of porosity and permeability. High temperature can increase the plasticity of the rock, intensify the compression of pores due to high confining pressure, and induce thermal stress between the rock skeleton particles, allowing the reopening of shale bedding or the creation of new fractures along weak planes such as bedding, which inhibits the decrease of permeability with the increase of temperature and confining pressure. Compared with the triaxial mechanical experiment at normal temperature, the triaxial compression experiment at high temperature and high pressure demonstrates that the compressive strength and peak strain of deep shale increase significantly due to the coupling of temperature and pressure. The compressive strength is up to 435 MPa and the peak strain exceeds 2%, indicating that high temperature is not conducive to fracture initiation and expansion by increasing rock plasticity. Lithofacies and mineral composition have great impacts on the porosity, permeability and rock mechanics of deep shale. Shales with different lithologies are different in the difficulty and extent of brittle failure. The stress-strain characteristics of rocks under actual geological conditions are key support to the optimization of reservoir stimulation program. 展开更多
关键词 sichuan basin longmaxi formation deep shale gas POROSITY PERMEABILITY rock mechanics high temperature and high pressure triaxial compression
下载PDF
Enlightenment of calcite veins in deep Ordovician Wufeng-Silurian Longmaxi shales fractures to migration and enrichment of shale gas in southern Sichuan Basin, SW China
3
作者 CUI Yue LI Xizhe +5 位作者 GUO Wei LIN Wei HU Yong HAN Lingling QIAN Chao ZHAO Jianming 《Petroleum Exploration and Development》 SCIE 2023年第6期1374-1385,共12页
The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through ... The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through core and thin section observations, cathodoluminescence analysis, isotopic geochemistry analysis, fluid inclusion testing, and basin simulation. Tectonic fracture calcite veins mainly in the undulating part of the structure and non-tectonic fracture calcite veins are mainly formed in the gentle part of the structure. The latter, mainly induced by hydrocarbon generation, occurred at the stage of peak oil and gas generation, while the former turned up with the formation of Luzhou paleouplift during the Indosinian. Under the influence of hydrocarbon generation pressurization process, fractures were opened and closed frequently, and oil and gas episodic activities are recorded by veins. The formation pressure coefficient at the maximum paleodepth exceeds 2.0. The formation uplift stage after the Late Yanshanian is the key period for shale gas migration. Shale gas migrates along the bedding to the high part of the structure. The greater the structural fluctuation is, the more intense the shale gas migration activity is, and the loss is more. The gentler the formation is, the weaker the shale gas migration activity is, and the loss is less. The shale gas enrichment in the core of gentle anticlines and gentle synclines is relatively higher. 展开更多
关键词 sichuan basin deep formation in southern sichuan basin Ordovician Wufeng formation Silurian longmaxi formation fracture calcite vein fluid inclusion shale gas enrichment model
下载PDF
Microfacies types and distribution of epicontinental shale: A case study of the Wufeng–Longmaxi shale in southern Sichuan Basin, China
4
作者 WANG Hongyan SHI Zhensheng +4 位作者 SUN Shasha ZHAO Qun ZHOU Tianqi CHENG Feng BAI Wenhua 《Petroleum Exploration and Development》 2023年第1期57-71,共15页
For black shales,laminae and bedding are hard to identify,grain size is difficult to measure,and trace fossils do not exist.Taking the Ordovician Wufeng–Silurian Longmaxi shale in southern Sichuan Basin,China,as an e... For black shales,laminae and bedding are hard to identify,grain size is difficult to measure,and trace fossils do not exist.Taking the Ordovician Wufeng–Silurian Longmaxi shale in southern Sichuan Basin,China,as an example,the types,characteristics and models of microfacies in epicontinental shale are analyzed by means of full-scale observation of large thin sections,argon-ion polishing field emission-scanning electron microscopy(FE-SEM),and kerogen microscopy.The epicontinental sea develops delta,tidal flat and shelf facies,with black shale found in microfacies such as the underwater distributary channel and interdistributary bay under delta front facies,the calcareous and clayey flats under intertidal flat facies,the calcareous and clayey shelfs under shallow shelf facies,the deep slope,deep plain and deep depression under deep shelf facies,and the overflow under gravity flow facies.Basinward,silty lamina decreases and clayey lamina increases,the grain size changes from coarse silt to fine mud,the silica content increases from about 20%to above 55%,the carbonate and clay minerals content decreases from above 40%to around 10%,and the kerogen type changes from type II2 to type II1 and type I.Provenance and topography dominate the types and distribution of shale microfacies.The underwater distributary channel,interdistributary bay,clayey flat,clayey shelf,and overflow microfacies are developed in areas with sufficient sediment supply.The calcareous flat and calcareous shelf are developed in areas with insufficient sediment supply.The deep shelf shale area is divided into deep slope,deep plain,and deep depression microfacies as a result of three breaks.The formation of epicontinental shale with different microfacies is closely related to the tectonic setting,paleoclimate,and sea level rise.The relatively active tectonic setting increases the supply of terrigenous clasts,forming muddy water fine-grained sediment.The warm and humid paleoclimate is conducive to the enrichment of organic matter.The rapid sea level rise is helpful to the widespread black shale. 展开更多
关键词 shale gas SHALE MICROFACIES sedimentary model epicontinental deep shelf Wufeng formation longmaxi formation southern sichuan basin sichuan basin
下载PDF
Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China 被引量:7
5
作者 MA Xinhua XIE Jun +1 位作者 YONG Rui ZHU Yiqing 《Petroleum Exploration and Development》 2020年第5期901-915,共15页
Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakth... Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakthroughs have been made in deeper shale gas resources at depth of 3500–4500 m.To promote the effective production of shale gas in this area,this study examines key factors controlling high shale gas production and presents the next exploration direction in the southern Sichuan Basin based on summarizing the geological understandings from the Lower Silurian Longmaxi Formation shale gas exploration combined with the latest results of geological evaluation.The results show that:(1)The relative sea depth in marine shelf sedimentary environment controls the development and distribution of reservoirs.In the relatively deep water area in deep-water shelf,grade-I reservoirs with a larger continuous thickness develop.The relative depth of sea in marine shelf sedimentary environment can be determined by redox conditions.The research shows that the uranium to thorium mass ratio greater than 1.25 indicates relatively deep water in anoxic reduction environment,and the uranium to thorium mass ratio of 0.75–1.25 indicates semi-deep water in weak reduction and weak oxidation environment,and the uranium to thorium mass ratio less than 0.75 indicates relatively shallow water in strong oxidation environment.(2)The propped fractures in shale reservoirs subject to fracturing treatment are generally 10–12 m high,if grade-I reservoirs are more than 10 m in continuous thickness,then all the propped section would be high-quality reserves;in this case,the longer the continuous thickness of penetrated grade-I reservoirs,the higher the production will be.(3)The shale gas reservoirs at 3500–4500 m depth in southern Sichuan are characterized by high formation pressure,high pressure coefficient,well preserved pores,good pore structure and high proportion of free gas,making them the most favorable new field for shale gas exploration;and the pressure coefficient greater than 1.2 is a necessary condition for shale gas wells to obtain high production.(4)High production wells in the deep shale gas reservoirs are those in areas where Long11-Long13 sub-beds are more than 10 m thick,with 1500 m long horizontal section,grade-I reservoirs penetration rate of over 90%,and fractured by dense cutting+high intensity sand injection+large displacement+large liquid volume.(5)The relatively deep-water area in the deep-water shelf and the area at depth of 3500–4500 m well overlap in the southern Sichuan,and the overlapping area is the most favorable shale gas exploration and development zones in the southern Sichuan in the future.With advancement in theory and technology,annual shale gas production in the southern Sichuan is expected to reach 450×108 m3. 展开更多
关键词 southern sichuan basin Lower Silurian longmaxi formation deeply buried shale gas high production control factors deep water and deep burial shale gas reservoir
下载PDF
Petrophysical properties of deep Longmaxi Formation shales in the southern Sichuan Basin, SW China 被引量:1
6
作者 XU Zhonghua ZHENG Majia +7 位作者 LIU Zhonghua DENG Jixin LI Xizhe GUO Wei LI Jing WANG Nan ZHANG Xiaowei GUO Xiaolong 《Petroleum Exploration and Development》 2020年第6期1183-1193,共11页
Deep shale layer in the Lower Silurian Longmaxi Formation,southern Sichuan Basin is the major replacement target of shale gas exploration in China.However,the prediction of"sweet-spots"in deep shale gas rese... Deep shale layer in the Lower Silurian Longmaxi Formation,southern Sichuan Basin is the major replacement target of shale gas exploration in China.However,the prediction of"sweet-spots"in deep shale gas reservoirs lacks physical basis due to the short of systematic experimental research on the physical properties of the deep shale.Based on petrological,acoustic and hardness measurements,variation law and control factors of dynamic and static elastic properties of the deep shale samples are investigated.The study results show that the deep shale samples are similar to the middle-shallow shale in terms of mineral composition and pore type.Geochemical characteristics of organic-rich shale samples(TOC>2%)indicate that these shale samples have a framework of microcrystalline quartz grains;the intergranular pores in these shale samples are between rigid quartz grains and have mechanical property of hard pore.The lean-organic shale samples(TOC<2%),with quartz primarily coming from terrigenous debris,feature plastic clay mineral particles as the support frame in rock texture.Intergranular pores in these samples are between clay particles,and show features of soft pores in mechanical property.The difference in microtexture of the deep shale samples results in an asymmetrical inverted V-type change in velocity with quartz content,and the organic-rich shale samples have a smaller variation rate in velocity-porosity and velocity-organic matter content.Also due to the difference in microtexture,the organic-rich shale and organic-lean shale can be clearly discriminated in the cross plots of P-wave impedance versus Poisson’s ratio as well as elasticity modulus versus Poisson’s ratio.The shale samples with quartz mainly coming from biogenic silica show higher hardness and brittleness,while the shale samples with quartz from terrigenous debris have hardness and brittleness less affected by quartz content.The study results can provide a basis for well-logging interpretation and"sweet spot"prediction of Longmaxi Formation shale gas reservoirs. 展开更多
关键词 southern sichuan basin SILURIAN deep longmaxi formation shale rock physical properties elasticity velocity
下载PDF
Development Phases and Mechanisms of Tectonic Fractures in the Longmaxi Formation Shale of the Dingshan Area in Southeast Sichuan Basin, China 被引量:7
7
作者 FAN Cunhui HE Shun +2 位作者 ZHANG Yu QIN Qirong ZHONG Cheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第6期2351-2366,共16页
Shale gas has currently attracted much attention during oil and gas exploration and development. Fractures in shale have an important influence on the enrichment and preservation of shale gas. This work studied the de... Shale gas has currently attracted much attention during oil and gas exploration and development. Fractures in shale have an important influence on the enrichment and preservation of shale gas. This work studied the developmental period and formation mechanism of tectonic fractures in the Longmaxi Formation shale in the Dingshan area of southeastern Sichuan Basin based on extensive observations of outcrops and cores, rock acoustic emission(Kaiser) experiments, homogenization temperature of fracture fill inclusions, apatite fission track, thermal burial history. The research shows that the fracture types of the Longmaxi Formation include tectonic fractures, diagenetic fractures and horizontal slip fractures. The main types are tectonic high-angle shear and horizontal slip fractures, with small openings, large spacing, low densities, and high degrees of filling. Six dominant directions of the fractures after correction by plane included NWW, nearly SN, NNW, NEE, nearly EW and NW. The analysis of field fracture stage and fracture system of the borehole suggests that the fractures in the Longmaxi Formation could be paired with two sets of plane X-shaped conjugate shear fractures, i.e., profile X-shaped conjugate shear fractures and extension fractures. The combination of qualitative geological analysis and quantitative experimental testing techniques indicates that the tectonic fractures in the Longmaxi Formation have undergone three periods of tectonic movement, namely mid-late Yanshanian movement(82–71.1 Ma), late Yanshanian and middle Himalaya movements(71.1–22.3 Ma), and the late Himalayan movement(22.3–0 Ma). The middle-late period of the Yanshanian movement and end of the Yanshanian movement-middle period of the Himalayan movement were the main fractureforming periods. The fractures were mostly filled with minerals, such as calcite and siliceous. The homogenization temperature of fracture fill inclusions was high, and the paleo-stress value was large; the tectonic movement from the late to present period was mainly a slight transformation and superposition of existing fractures and tectonic systems. Based on the principle of tectonic analysis and theory of geomechanics, we clarified the mechanism of the fractures in the Longmaxi Formation, and established the genetic model of the Longmaxi Formation. The research on the qualitative and quantitative techniques of the fracture-phase study could be effectively used to analyze the causes of the marine shale gas fractures in the Sichuan Basin. The research findings and results provide important references and technical support for further exploration and development of marine shale gas in South China. 展开更多
关键词 SHALE fracture characteristics formation phases longmaxi formation Dingshan area sichuan basin
下载PDF
Source Rock and Cap Rock Controls on the Upper Ordovician Wufeng Formation–Lower Silurian Longmaxi Formation Shale Gas Accumulation in the Sichuan Basin and its Peripheral Areas 被引量:21
8
作者 NIE Haikuan JIN Zhijun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第3期1059-1060,共2页
Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has b... Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has been discovered from this interval in Jiaoshiba, Changning and Weiyuan shale gas fields in Sichuan Province. However, there is no significant discovery in other parts of the basin due to the different quality of black shale and the differences of tectonic evolution. Based on the progress of shale gas geological theory and exploration discoveries, as well as the theory of "source rock and cap rock controls on hydrocarbon accumulation", of the Upper Ordovician the main controlling factors Wufeng Formation-Lower Silurian Longmaxi Formation shale gas enrichment in the Sichuan Basin and its peripheral areas were analyzed, and the source rock and cap rock controls on the shale gas were also discussed. The results can provide new insights for the next shale gas exploration in this area. 展开更多
关键词 ROCK Lower Silurian longmaxi formation Shale Gas Accumulation in the sichuan basin and its Peripheral Areas Source Rock and Cap Rock Controls on the Upper Ordovician Wufeng formation
下载PDF
Hydrocarbon generation and storage mechanisms of deepwater shelf shales of Ordovician Wufeng Formation–Silurian Longmaxi Formation in Sichuan Basin, China 被引量:11
9
作者 GUO Xusheng LI Yuping +5 位作者 BORJIGEN Tenger WANG Qiang YUAN Tao SHEN Baojian MA Zhongliang WEI Fubin 《Petroleum Exploration and Development》 2020年第1期204-213,共10页
As the hydrocarbon generation and storage mechanisms of high quality shales of Upper Ordovician Wufeng Formation– Lower Silurian Longmaxi Formation remain unclear, based on geological conditions and experimental mode... As the hydrocarbon generation and storage mechanisms of high quality shales of Upper Ordovician Wufeng Formation– Lower Silurian Longmaxi Formation remain unclear, based on geological conditions and experimental modelling of shale gas formation, the shale gas generation and accumulation mechanisms as well as their coupling relationships of deep-water shelf shales in Wufeng–Longmaxi Formation of Sichuan Basin were analyzed from petrology, mineralogy, and geochemistry. The high quality shales of Wufeng–Longmaxi Formation in Sichuan Basin are characterized by high thermal evolution, high hydrocarbon generation intensity, good material base, and good roof and floor conditions;the high quality deep-water shelf shale not only has high biogenic silicon content and organic carbon content, but also high porosity coupling. It is concluded that:(1) The shales had good preservation conditions and high retainment of crude oil in the early times, and the shale gas was mainly from cracking of crude oil.(2) The biogenic silicon(opal A) turned into crystal quartz in early times of burial diagenesis, lots of micro-size intergranular pores were produced in the same time;moreover, the biogenic silicon frame had high resistance to compaction, thus it provided the conditions not only for oil charge in the early stage, but also for formation and preservation of nanometer cellular-like pores, and was the key factor enabling the preservation of organic pores.(3) The high quality shale of Wufeng–Longmaxi Formation had high brittleness, strong homogeneity, siliceous intergranular micro-pores and nanometer organic pores, which were conducive to the formation of complicated fissure network connecting the siliceous intergranular nano-pores, and thus high and stable production of shale gas. 展开更多
关键词 hydrocarbon generation and STORAGE mechanism Upper ORDOVICIAN Wufeng formation Lower SILURIAN longmaxi formation deep-water SHELF siliceous shale sichuan basin pore preservation
下载PDF
Biostratigraphy and reservoir characteristics of the Ordovician Wufeng Formation-Silurian Longmaxi Formation shale in the Sichuan Basin and its surrounding areas,China 被引量:3
10
作者 WANG Hongyan SHI Zhensheng SUN Shasha 《Petroleum Exploration and Development》 CSCD 2021年第5期1019-1032,共14页
Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and res... Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and reservoir characteristics of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its peripheral are sorted out.There are 4 graptolite zones(WF1 to WF4)in Wufeng Formation and 9(LM1 to LM9)in Longmaxi Formation,and the different graptolite zones can be calibrated by lithology and electrical property.The shale layers of these graptolite zones have two depocenters in the southwest and northeast,and differ in mineral composition,TOC,and lamina types.Among them,the graptolite zones of lower WF2 and WF4 are organic matter-poor massive hybrid shale,the upper part of WF1-WF2 and WF3 have horizontal bedding hybrid shale with organic matter,the LM1-LM4 mainly consist of organic-rich siliceous shale with horizontal bedding,and the LM5-LM9 graptolite zones consist of organic-lean hybrid shale with horizontal bedding.The mineral composition,TOC and lamina types of shale depend on the paleo-climate,paleo-water oxidation-reduction conditions,and paleo-sedimentation rate during its deposition.Deposited in oxygen-rich warm water,the lower parts of WF1 and WF2 graptolite zones have massive bedding,low TOC and silicon content.Deposited in cooler and oxygen-rich water,the WF4 has massive bedding,high calcium content and low TOC.Deposited in anoxic water with low rate,the upper part of WF2,WF3,and LM1-LM4 are composed of organic rich siliceous shale with horizontal bedding and high proportion of silt laminae.Deposited in oxygen rich water at a high rate,the graptolite zones LM5-LM9 have low contents of organic matter and siliceous content and high proportions of silt lamina. 展开更多
关键词 graptolite zone SHALE reservoir characteristics Ordovician Wufeng formation Silurian longmaxi formation Upper Yangtze area sichuan basin
下载PDF
Developmental characteristics and geological significance of the bentonite in the Upper Ordovician Wufeng – Lower Silurian Longmaxi Formation in eastern Sichuan Basin, SW China 被引量:3
11
作者 WANG Yuman LI Xinjing +4 位作者 WANG Hao JIANG Shan CHEN Bo MA Jie DAI Bing 《Petroleum Exploration and Development》 2019年第4期687-700,共14页
Based on the Qiliao section of the Upper Ordovician Wufeng Formation – Lower Silurian Longmaxi Formation in Shizhu, Chongqing city, the development characteristics of bentonite in eastern Sichuan Basin was examined s... Based on the Qiliao section of the Upper Ordovician Wufeng Formation – Lower Silurian Longmaxi Formation in Shizhu, Chongqing city, the development characteristics of bentonite in eastern Sichuan Basin was examined systematically, and its geological significance and scientific value were analyzed. The main understandings are as follows:(1) Six bentonite dense layers were found in the Qiliao section, mainly occurring in 6 graptolitic belts of the Katian, Rhuddanian and Aeronian. Most of the bentonite dense layers showed obvious increase in clay, peak response of GR curve, and indistinct relationship between volcanic ash and total organic carbon(TOC).(2) The bentonite dense layers of Longmaxi Formation were widely distributed in eastern Sichuan Basin and its periphery, and generally showed GR peak, which can be an important reference interface for dividing the bottom boundary of the Coronograptus cyphus belt and the top boundary of the Rhuddanian in eastern Sichuan Basin and western Hubei province.(3) Taking the bentonite dense layers as the stratification basis of the Rhuddanian and Aeronian, it was determined that the sediment thickness of the Rhuddanian in the eastern Sichuan depression was generally 10–40 m, but only the upper part of the Coronograptus cyphus belt was deposited in the hinderland of Yichang Uplift, and the sedimentary thickness was only 3–7 m.(4) In the hinderland of the Yichang Uplift, at least five and a half graptolitic belts were missing in Wufeng Formation – Rhuddanian, and the deposition time of Rhuddanian was less than 0.4 Ma.(5) The bentonite dense layers were important sedimentary responses to the strong deflection of the Yangtze basin at the turn of the Ordovician–Silurian, which suggested that four tectonic activity periods existed in the eastern Sichuan depression, including the early stage of the depression, the middle-late stage of the depression, the early stage of the foreland flexure and the development stage of the foreland flexure. The high-quality shale was mainly developed from the early stage to the middle-late stage in the depression. 展开更多
关键词 sichuan basin Qiliao Section Lower SILURIAN longmaxi formation BENTONITE Yichang UPLIFT depression behind the UPLIFT organic-rich shale
下载PDF
Quantitative prediction of shale gas sweet spots based on seismic data in Lower Silurian Longmaxi Formation,Weiyuan area,Sichuan Basin,SW China 被引量:2
12
作者 ZENG Qingcai CHEN Sheng +8 位作者 HE Pei YANG Qing GUO Xiaolong CHEN Peng DAI Chunmeng LI Xuan GAI Shaohua DENG Yu HOU Huaxing 《Petroleum Exploration and Development》 2018年第3期422-430,共9页
Sweet spots in the shale reservoirs of the Lower Silurian Longmaxi Formation in Weiyuan 201 Block of Sichuan Basin were predicted quantitatively using seismic data and fuzzy optimization method. First, based on seismi... Sweet spots in the shale reservoirs of the Lower Silurian Longmaxi Formation in Weiyuan 201 Block of Sichuan Basin were predicted quantitatively using seismic data and fuzzy optimization method. First, based on seismic and rock physics analysis, the rock physics characteristics of the reservoirs were determined, and elastic parameters sensitive to shale reservoirs with high gas content were selected. Second, data volumes with high precision of the elastic parameters were obtained from pre-stack simultaneous inversion. The horizontal distribution of key parameters for shale gas evaluation were calculated based on the results of rock physics analysis. Then, the fuzzy evaluation equation was established by fuzzy optimization method with test and logging data of horizontal wells with similar operation conditions. key parameters affecting the productivity of horizontal wells were sorted out and the weights of them in the sweet spots quantitative prediction were worked out by fuzzy optimization to set up a sweet spots evaluation system. Three classes of shale gas reservoirs which including two kinds of sweet spots were predicted with the above procedure, and the sweet spots have been predicted quantitatively by combining the above prediction results with the testing production. The testing results of 7 verification wells proved the reliability of the prediction results. 展开更多
关键词 sichuan basin Lower SILURIAN longmaxi formation shale gas SWEET SPOTS quantitative prediction fuzzy optimization
下载PDF
Type and distribution of Mid-Permian Maokou Formation karst reservoirs in southern Sichuan Basin,SW China 被引量:1
13
作者 HUANG Shipeng JIANG Qingchun +6 位作者 FENG Qingfu WU Ya LU Weihua SU Wang CHEN Xiaoyue REN Mengyi PENG Hui 《Petroleum Exploration and Development》 2019年第2期293-300,共8页
Based on the analysis of the responses of conventional logs such as natural gamma(GR), density(DEN), acoustic interval transit time(AC), compensated neutron(CNL), dual lateral resistivity(Rlld, Rlls), and caliper log(... Based on the analysis of the responses of conventional logs such as natural gamma(GR), density(DEN), acoustic interval transit time(AC), compensated neutron(CNL), dual lateral resistivity(Rlld, Rlls), and caliper log(CAL), combined with drilling data,cores, thin section and productivity of 65 wells, the reservoirs in the Mid-Permian Maokou Formation of southern Sichuan Basin were divided into four types, fractured-vuggy, pore-vuggy, fractured and fractured-cavity. The main reservoirs in high productivity wells are fractured-vuggy and pore-vuggy. The reservoirs of Maokou Formation are generally thin, and can be divided into the upper reservoir segment(layer a of the second member to the third member of Maokou Formation, P_2 m^2 a-P_2 m^3) and the lower segment(layer b of the second member of Maokou Formation, P_2 m^2 b). The two reservoir segments are mainly controlled by two grain beaches during the sedimentation of P_2 m^2 a-P_2 m^3 and P_2 m^2 b, the vertical zonation of karst, and the fractures. The upper reservoir segment is generally better than the lower one in development degree and single well productivity, and is much thicker than the lower one. It is thicker in the Yibin-Zigong-Weiyuan-Dazu area, the southwestern area of Chongqing and the southeastern area of Luzhou, while the lower segment is thicker in the Neijiang-Zigong-Luzhou area and the Dazu-Luzhou area. The areas with big reservoir thickness at tectonic slope or syncline parts are the favorable exploration areas. 展开更多
关键词 southern sichuan basin Mid-Permian Maokou formation KARST reservoir cavity fracture grain beach logging response
下载PDF
Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin,SW China 被引量:1
14
作者 SHI Zhensheng QIU Zhen +3 位作者 DONG Dazhong LU Bin LIANG Pingping ZHANG Mengqi 《Petroleum Exploration and Development》 2018年第2期358-368,共11页
Based on various test data, the composition, texture, structure and lamina types of gas-bearing shale were determined based on Well Wuxi 2 of the Silurian Longmaxi Formation in the Sichuan Basin. Four types of lamina,... Based on various test data, the composition, texture, structure and lamina types of gas-bearing shale were determined based on Well Wuxi 2 of the Silurian Longmaxi Formation in the Sichuan Basin. Four types of lamina, namely organic-rich lamina, organic-bearing lamina, clay lamina and silty lamina, are developed in the Longmaxi Formation of Well Wuxi 2, and they form 2 kinds of lamina set and 5 kinds of beds. Because of increasing supply of terrigenous clasts and enhancing hydrodynamics and associated oxygen levels, the contents of TOC and brittle mineral reduce and content of clay mineral increases gradually as the depth becomes shallow. Organic-rich lamina, organic-rich + organic-bearing lamina set and organic-rich bed dominate the small layers 1-3 of Member 1 of the Longmaxi Formation, suggesting anoxic and weak hydraulic depositional setting. Organic-rich lamina, along with organic-bearing lamina and silty lamina, appear in small layer 4, suggesting increased oxygenated and hydraulic level. Small layers 1-3 are the best interval and drilling target of shale gas exploration and development. 展开更多
关键词 sichuan basin longmaxi formation FinE-GRAinED SEDIMENT SHALE GAS lamina WELL WUXI 2
下载PDF
Basic characteristics of key interfaces in Upper Ordovician Wufeng Formation – Lower Silurian Longmaxi Formation in Sichuan Basin and its periphery,SW China
15
作者 WANG Yuman WANG Hongyan +5 位作者 QIU Zhen SHEN Junjun ZHANG Qin ZHANG Leifu WANG Canhui LI Xinjing 《Petroleum Exploration and Development》 CSCD 2022年第1期37-51,共15页
Based on anatomy of key areas and data points and analysis of typical features of shell layer in Guanyinqiao Member, basic characteristics of key interfaces, mainly bentonite layers, in the Upper Ordovician Wufeng For... Based on anatomy of key areas and data points and analysis of typical features of shell layer in Guanyinqiao Member, basic characteristics of key interfaces, mainly bentonite layers, in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in the Sichuan Basin and its surrounding areas and the relationship between these key interfaces with the deposition of organic-rich shale have been examined systematically. The Wufeng Formation-Longmaxi Formation has four types of marker beds with interface attributes, namely, the characteristic graptolite belt, Guanyinqiao Member shell layer, section with dense bentonite layers, and concretion section, which can be taken as key interfaces for stratigraphic division and correlation of the graptolite shale. The shell layer in Guanyinqiao Member is the most standard key interface in Wufeng Formation-Longmaxi Formation, and can also be regarded as an important indicator for judging the depositional scale of organic-rich shale in key areas. There are 8 dense bentonite sections of two types mainly occurring in 7 graptolite belts in these formations. They have similar interface characteristics with the shell layer in Guanyinqiao Member in thickness and natural gamma response, and belong to tectonic interfaces(i.e., event deposits). They have three kinds of distribution scales: whole region, large part of the region, and local part, and can be the third, fourth and fifth order sequence interfaces, and have a differential control effect on organic-rich shale deposits. The horizon the characteristic graptolite belt occurs first is the isochronous interface, which is not directly related to the deposition of organic-rich shale. Concretions only appear in local areas, and show poor stability in vertical and horizontal directions, and have no obvious relationship with the deposition of the organic-rich shale. 展开更多
关键词 sichuan basin Upper Ordovician Wufeng formation Lower Silurian longmaxi formation Guanyinqiao Member graptolitic belt shell layer BENTONITE CONCRETION organic-rich shale
下载PDF
Differential Characteristics of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Shale Reservoir and its Implications for Exploration and Development of Shale Gas in/around the Sichuan Basin 被引量:9
16
作者 WANG Ruyue HU Zongquan +6 位作者 LONG Shengxiang LIU Guangxiang ZHAO Jianhua DONG Li DU Wei WANG Pengwei YIN Shuai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第3期520-535,共16页
The Upper Ordovician Wufeng-Lower Silurian Longmaxi shale is widely distributed in the Sichuan Basin and its periphery,which is the key stratum for marine shale gas exploration and development(E&D)in China.Based o... The Upper Ordovician Wufeng-Lower Silurian Longmaxi shale is widely distributed in the Sichuan Basin and its periphery,which is the key stratum for marine shale gas exploration and development(E&D)in China.Based on sedimentary environment,material basis,storage space,fracability and reservoir evolution data,the reservoir characteristics of the Wufeng-Longmaxi shale and their significance for shale gas E&D are systematically compared and analyzed in this paper.The results show that(1)the depocenter of the Wufeng(WF)-Longmaxi(LM)shale gradually migrates from east to west.The high-quality shale reservoirs in the eastern Sichuan Basin are mainly siliceous shales,which are primarily distributed in the graptolite shale interval of WF2-LM5.The high-quality reservoirs in the southern Sichuan Basin are mainly calcareous-siliceous and organic-rich argillaceous shales,which are distributed in the graptolite shale interval of WF2-LM7.(2)Deep shale gas(the burial depth>3500 m)in the Sichuan Basin has high-ultrahigh pressure and superior physical properties.The organic-rich siliceous,calcareous-siliceous and organic-rich argillaceous shales have suitable reservoir properties.The marginal area of the Sichuan Basin has a higher degree of pressure relief,which leads to the argillaceous and silty shales evolving into direct cap rocks with poor reservoir/good sealing capacity.(3)Combining shale gas exploration practices and impacts of lithofacies,depth,pressure coefficient and brittle-ductile transition on the reservoir properties,it is concluded that the favorable depth interval of the Wufeng-Longmaxi shale gas is 2200~4000 m under current technical conditions.(4)Aiming at the differential reservoir properties of the Wufeng-Longmaxi shale in the Sichuan Basin and its periphery,several suggestions for future research directions and E&D of shale gas are formulated. 展开更多
关键词 SHALE gas RESERVOIR physical property fracability evolution Wufeng formation longmaxi formation sichuan basin
下载PDF
The progress and prospects of shale gas exploration and development in southern Sichuan Basin, SW China 被引量:6
17
作者 MA Xinhua XIE Jun 《Petroleum Exploration and Development》 2018年第1期172-182,共11页
The Ordovician Wufeng Formation-Silurian Longmaxi Formation organic-rich shales distributed widely and stably in Southern Sichuan Basin were investigated based on drilling data.Geological evaluation of wells show that... The Ordovician Wufeng Formation-Silurian Longmaxi Formation organic-rich shales distributed widely and stably in Southern Sichuan Basin were investigated based on drilling data.Geological evaluation of wells show that the shale reservoirs have good properties in the Yibin,Weiyuan,Zigong,Changning,Luzhou,Dazu areas,with key parameters such as TOC,porosity,gas content similar to the core shale gas production zones.Moreover,these areas are stable in structure,good in preservation conditions and highly certain in resources.The shale reservoirs have a burial depth of 4 500 m or shallow,a total area of over 2×10~4 km^2 and estimated resource of over10×10^(12) m^3,so they are the most resource-rich and practical areas for shale gas exploitation in China.Through construction of the Changning-Weiyuan national demonstration region,the production and EUR of shale gas wells increased significantly,the cost of shale gas wells decreased remarkable,resulting in economic benefit better than expected.Moreover,the localized exploration and development technologies and methods are effective and repeatable,so it is the right time for accelerating shale gas exploitation.Based on the production decline pattern of horizontal wells at present and wells to be drilled in the near future,at the end of the 13th Five Year Plan,the production of shale gas in southern Sichuan Basin is expected to reach or exceed 10 billion cubic meters per year.The resources are sufficient for a stable production period at 30 billion cubic meters per year,which will make the South Sichuan basin become the largest production base of shale gas in China. 展开更多
关键词 sichuan basin southern sichuan basin shale gas ORDOVICIAN Wufeng formation SILURIAN longmaxi formation resource potential
下载PDF
Graptolite-Derived Organic Matter and Pore Characteristics in the Wufeng-Longmaxi Black Shale of the Sichuan Basin and its Periphery 被引量:3
18
作者 WU Jin ZHOU Wen +2 位作者 SUN Shasha ZHOU Shangwen SHI Zhensheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第4期982-995,共14页
A key target of shale gas exploration and production in China is the organic-rich black shale of the Wufeng Formation-Longmaxi Formation in the Sichuan Basin and its periphery.The set of black shale contains abundant ... A key target of shale gas exploration and production in China is the organic-rich black shale of the Wufeng Formation-Longmaxi Formation in the Sichuan Basin and its periphery.The set of black shale contains abundant graptolites,which are mainly preserved as flattened rhabdosomes with carbonized periderms,is an important organic component of the shale.However,few previous studies had focused on the organic matter(OM)which is derived from graptolite and its pore structure.In particular,the contributions of graptolites to gas generation,storage,and flow have not yet been examined.In this study,focused ion beam-scanning electron microscope(FIB-SEM)was used to investigate the characteristics of the graptolite-derived OM and the micro-nanopores of graptolite periderms.The results suggested that the proportion of OM in the graptolite was between 19.7%and 30.2%,and between 8.9%and 14.4%in the surrounding rock.The total organic carbon(TOC)content of the graptolite was found to be higher than that of the surrounding rock,which indicated that the graptolite played a significant role in the dispersed organic matter.Four types of pores were developed in the graptolite periderm,including organic gas pores,pyrite moulage pores,authigenic quartz moldic pores,and microfractures.These well-developed micro-nano pores and fractures had formed an interconnected system within the graptolites which provided storage spaces for shale gas.The stacked layers and large accumulation of graptolites resulted in lamellation fractures openning easily,and provided effective pathways for the gas flow.A few nanoscale gas pores were observed in the graptolite-derived OM,with surface porosity lie in 1.5%–2.4%,and pore diameters of 5–20 nm.The sapropel detritus was determined to be rich in nanometer-sized pores with surface porosity of 3.1%–6.2%,and pore diameters of 20–80 nm.Due to the small amount of hydrocarbon generation of the graptolite,supporting the overlying pressure was difficult,which caused the pores to become compacted or collapsed. 展开更多
关键词 GRAPTOLITE pore structure shale gas Wufeng-longmaxi formations sichuan basin
下载PDF
Sequence stratigraphy and lithofacies paleogeographic evolution of Katian Stage-Aeronian Stage in southern Sichuan Basin,SW China 被引量:1
19
作者 ZHU Yiqing CHEN Gengsheng +6 位作者 LIU Yong SHI Xuewen WU Wei LUO Chao YANG Xue YANG Yu ran ZOU Yuanhong 《Petroleum Exploration and Development》 CSCD 2021年第5期1126-1138,共13页
Based on the lithologies,sedimentary structures,graptolite zones,inorganic geochemical characteristics,electrical data of 110 shale gas wells in southern Sichuan Basin and the mineral quantitative analysis technology ... Based on the lithologies,sedimentary structures,graptolite zones,inorganic geochemical characteristics,electrical data of 110 shale gas wells in southern Sichuan Basin and the mineral quantitative analysis technology of scanning electron microscope,the stratigraphic sequences of the Upper Ordovician Katian Stage-Himantian Stage-Silurian Rhuddanian Stage-Aeronian Stage are divided,the sedimentary characteristics and fourth-order sequence evolution are analyzed.The target layer can be divided into two sequences,namely SQ1 and SQ2.According to Ordovician-Silurian sedimentary background,the gamma value of the target layer and U/Th,5 maximum flooding surfaces and 12 system tracts are identified.According to system tracts and their combinations,eight fourth-order sequences are identified,namely,Pss1-Pss8 from old to new.The development period and scale of dominant shale facies from Katian stage to Aeronian stage in southern Sichuan are restored.The best-quality dolomite/calcite-bearing siliceous shale facies,siliceous shale facies,clay-bearing siliceous shale facies and feldspar-bearing siliceous shale facies mainly occur in Pss3-Pss5 of Weiyuan,Western Chongqing and Luzhou,Pss6 of Western Changning-Northern Luzhou-Central Western Chongqing and Pss3-Pss4 of Changning.The siliceous clay shale facies second in quality mainly occurs in Pss6 of Southern Luzhou-Changning area(excluding Western Changning area),Pss7 of Eastern Weiyuan-Northern Western Chongqing-Southern Luzhou and Pss8 of Northern Luzhou-Weiyuan-Western Chongqing.The fourth-order sequence evolution model of Katian stage-Aeronian stage in southern Sichuan is established.During the depositional period of Pss1-Pss8,the sea level had six regressions and five transgressions,and the first transgression SQ2-MFS1 after glaciation was the largest flooding surface. 展开更多
关键词 southern sichuan basin Katian Stage-Aeronian Stage Upper Ordovician Wufeng formation Lower Silurian longmaxi formation sequence stratigraphy lithofacies palaeogeography
下载PDF
Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China
20
作者 SHI Zhensheng DONG Dazhong +2 位作者 WANG Hongyan SUN Shasha WU Jin 《Petroleum Exploration and Development》 2020年第4期888-900,共13页
Based on thin-section,argon-ion polished large-area imaging and nano-CT scanning data,the reservoir characteristics and genetic mechanisms of the Lower Silurian Longmaxi shale layers with different laminae and laminae... Based on thin-section,argon-ion polished large-area imaging and nano-CT scanning data,the reservoir characteristics and genetic mechanisms of the Lower Silurian Longmaxi shale layers with different laminae and laminae combinations in the Sichuan Basin were examined.It is found that the shale has two kinds of laminae,clayey lamina and silty lamina,which are different in single lamina thickness,composition,pore type and structure,plane porosity and pore size distribution.The clayey laminae are about 100μm thick each,over 15%in organic matter content,over 70%in quartz content,and higher in organic pore ratio and plane porosity.They have abundant bedding fractures and organic matter and organic pores connecting with each other to form a network.In contrast,the silty laminae are about 50μm thick each,5%to 15%in organic matter content,over 50%in carbonate content,higher in inorganic pore ratio,undeveloped in bedding fracture,and have organic matter and organic pores disconnected from each other.The formation of mud lamina and silt lamina may be related to the flourish of silicon-rich organisms.The mud lamina is formed during the intermittent period,and silt lamina is formed during the bloom period of silicon-rich organisms.The mud laminae and silt laminae can combine into three types of assemblages:strip-shaped silt,gradating sand-mud and sand-mud thin interlayers.The strip-shaped silt assemblage has the highest porosity and horizontal/vertical permeability ratio,followed by the gradating sand-mud assemblage and sand-mud thin interlayer assemblage.The difference in the content ratio of the mud laminae to silt laminae results in the difference in the horizontal/vertical permeability ratio. 展开更多
关键词 gas-bearing shale lamina reservoir characteristics genetic mechanism Lower Silurian longmaxi formation sichuan basin
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部