Though various integrable hierarchies of evolution equations were obtained by choosing proper U in zero-curvature equation Ut-Vx +[U, V] = 0, but in this paper, a new integrable hierarchy possessing bi-Hamiltonian st...Though various integrable hierarchies of evolution equations were obtained by choosing proper U in zero-curvature equation Ut-Vx +[U, V] = 0, but in this paper, a new integrable hierarchy possessing bi-Hamiltonian structure is worked out by selecting V with spectral potentials. Then its expanding Lax integrable model of the hierarchy possessing a simple Hamiltonian operator ^~J is presented by constructing a subalgebra ^~G of the loop algebra -^~A2. As linear expansions of the above-mentioned integrable hierarchy and its expanding Lax integrable model with respect to their dimensional numbers, their (2+1)-dimensional forms are derived from a (2+1)-dimensional zero-curvature equation.展开更多
A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational iden...A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational identities under non-degenerate,symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings.A special case of the suggested loop algebras yields nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy.展开更多
A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra AM-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu p...A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra AM-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu pattern, which possesses tri-Hamiltonian structures. Furthermore, it can be reduced to the well-known AKNS hierarchy and BPT hierarchy. Therefore, the major result of this paper can be regarded as a unified expression integrable model of the AKNS hierarchy and the BPT hierarchy.展开更多
A new Lie algebra, which is far different form the known An-1, is established, for which the corresponding loop algebra is given. From this, two isospectral problems are revealed, whose compatibility condition reads a...A new Lie algebra, which is far different form the known An-1, is established, for which the corresponding loop algebra is given. From this, two isospectral problems are revealed, whose compatibility condition reads a kind of zero curvature equation, which permits Lax integrable hierarchies of soliton equations. To aim at generating Hamiltonian structures of such soliton-equation hierarchies, a beautiful Killing-Cartan form, a generalized trace functional of matrices, is given, for which a generalized Tu formula (GTF) is obtained, while the trace identity proposed by Tu Guizhang [J. Math. Phys. 30 (1989) 330] is a special case of the GTF. The computing formula on the constant γ to be determined appearing in the GTF is worked out, which ensures the exact and simple computation on it. Finally, we take two examples to reveal the applications of the theory presented in the article. In details, the first example reveals a new Liouville-integrable hierarchy of soliton equations along with two potential functions and Hamiltonian structure. To obtain the second integrable hierarchy of soliton equations, a higher-dimensional loop algebra is first constructed. Thus, the second example shows another new Liouville integrable hierarchy with 5-potential component functions and bi- Hamiltonian structure. The approach presented in the paper may be extensively used to generate other new integrable soliton-equation hierarchies with multi-Hamiltonian structures.展开更多
A new Lax integrable hierarchy is obtained by constructing an isospectraJ problem with constrained conditions. Two kinds of integrable couplings are obtained by constructing two new expanding Lie algebras of the Lie a...A new Lax integrable hierarchy is obtained by constructing an isospectraJ problem with constrained conditions. Two kinds of integrable couplings are obtained by constructing two new expanding Lie algebras of the Lie algebra Be, respectively.展开更多
In this article, some modules over a loop Lie algebra associated to quantum plane are constructed. The isomorphism classes among these modules are also determined.
A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly,as its application,the multi-component TC equation hierarchy is obtained,then by use of trace identity the Hamiltonian structure of t...A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly,as its application,the multi-component TC equation hierarchy is obtained,then by use of trace identity the Hamiltonian structure of the above system is presented.Finally,the integrable couplings of the obtained system is worked out by the expanding matrix Loop algebra.展开更多
Two types of Lie algebras are constructed, which are directly used to deduce the two resulting integrable coupling systems with multi-component potential functions. Many other integrable couplings of the known integra...Two types of Lie algebras are constructed, which are directly used to deduce the two resulting integrable coupling systems with multi-component potential functions. Many other integrable couplings of the known integrable systems may be obtained by the approach.展开更多
An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loo...An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loop algebra [AKG~], the integrable couplings system of the NLS-MKdV equations hierarchy was obtained. As its reduction case, generalized nonlinear NLS-MKdV equations were obtained. The method proposed in this letter can be applied to other hierarchies of evolution equations.展开更多
A vector loop algebra and its extended loop algebra are proposed, which are devoted to obtaining the Tu hierarchy. By making use of the extended trace identity, the Harniltonian structure of the Tu hierarchy is constr...A vector loop algebra and its extended loop algebra are proposed, which are devoted to obtaining the Tu hierarchy. By making use of the extended trace identity, the Harniltonian structure of the Tu hierarchy is constructed. Furthermore, we apply the quadratic-form identity to the integrable coupling system of the Tu hierarchy.展开更多
A type of new loop algebra GM is constructed by making use of the concept of cycled numbers. As its application, an isospectral problem is designed and a new multi-component integrable hierarchy with multi-potential f...A type of new loop algebra GM is constructed by making use of the concept of cycled numbers. As its application, an isospectral problem is designed and a new multi-component integrable hierarchy with multi-potential functions is worked out, which can be reduced to the famous KN hierarchy.展开更多
Based on the generalization of Lie algebra An- 1, two types of new Lie algebras were worked out and the integrability of the related hierarchies of evolution equations were proved in the sense of Liouville.
In this paper we study the properties of homotopy inverses of comultiplications and Mgebraic loops of co-H-spaces based on a wedge of spheres. We also investigate a method to construct new comultiplications out of old...In this paper we study the properties of homotopy inverses of comultiplications and Mgebraic loops of co-H-spaces based on a wedge of spheres. We also investigate a method to construct new comultiplications out of old ones by using a group action. We are primarily interested in the algebraic loops which have inversive, power-associative and Moufang properties for some comultiplications.展开更多
A new loop algebra containing four arbitrary constants is presented, -whose commutation operation is concise, and the corresponding computing formula of constant γ in the quadratic-form identity is obtained in this p...A new loop algebra containing four arbitrary constants is presented, -whose commutation operation is concise, and the corresponding computing formula of constant γ in the quadratic-form identity is obtained in this paper, which can be reduced to computing formula of constant γ in the trace identity. As application, a new Liouville integrable hierarchy, which can be reduced to AKNS hierarchy is derived.展开更多
A scheme for generating nonisospectral integrable hierarchies is introduced.Based on the method,we deduce a nonisospectral hierarchy of soliton equations by considering a linear spectral problem.It follows that the co...A scheme for generating nonisospectral integrable hierarchies is introduced.Based on the method,we deduce a nonisospectral hierarchy of soliton equations by considering a linear spectral problem.It follows that the corresponding expanded isospectral and nonisospectral integrable hierarchies are deduced based on a 6 dimensional complex linear space ■.By reducing these integrable hierarchies,we obtain the expanded isospectral and nonisospectral derivative nonlinear Schr?dinger equation.By using the trace identity,the biHamiltonian structure of these two hierarchies are also obtained.Moreover,some symmetries and conserved quantities of the resulting hierarchy are discussed.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6...A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra sl(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources.展开更多
By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-f...By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.展开更多
A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Bou...A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Boussinesq hierarchy with self-consistent sources by using of loop algebra sl(4). In this paper, we also point out that there exist some errors in Yu's paper and have corrected these errors and set up new formula. The method can be generalized other soliton hierarchy with self-consistent sources.展开更多
Most researches focused on the analytical stabilized algorithm for the modular simulation of single domain, e.g., pure mechanical systems. Only little work has been performed on the problem of multi-domain simulation ...Most researches focused on the analytical stabilized algorithm for the modular simulation of single domain, e.g., pure mechanical systems. Only little work has been performed on the problem of multi-domain simulation stability influenced by algebraic loops. In this paper, the algebraic loop problem is studied by a composite simulation method to reveal the internal relationship between simulation stability and system topologies and simulation unit models. A stability criterion of multi-domain composite simulation is established, and two algebraic loop compensation algorithms are proposed using numerical iteration and approximate function in multi-domain simulation. The numerical stabilized algorithm is the Newton method for the solution of the set of nonlinear equations, and it is used here in simulation of the system composed of mechanical system and hydraulic system. The approximate stabilized algorithm is the construction of response surface for inputs and outputs of unknown unit model, and it is utilized here in simulation of the system composed of forging system, mechanical and hydraulic system. The effectiveness of the algorithms is verified by a case study of multi-domain simulation for forging system composed of thermoplastic deformation of workpieces, mechanical system and hydraulic system of a manipulator. The system dynamics simulation results show that curves of motion and force are continuous and convergent. This paper presents two algorithms, which are applied to virtual reality simulation of forging process in a simulation platform for a manipulator, and play a key role in simulation efficiency and stability.展开更多
文摘Though various integrable hierarchies of evolution equations were obtained by choosing proper U in zero-curvature equation Ut-Vx +[U, V] = 0, but in this paper, a new integrable hierarchy possessing bi-Hamiltonian structure is worked out by selecting V with spectral potentials. Then its expanding Lax integrable model of the hierarchy possessing a simple Hamiltonian operator ^~J is presented by constructing a subalgebra ^~G of the loop algebra -^~A2. As linear expansions of the above-mentioned integrable hierarchy and its expanding Lax integrable model with respect to their dimensional numbers, their (2+1)-dimensional forms are derived from a (2+1)-dimensional zero-curvature equation.
基金Project supported by the State Administration of Foreign Experts Affairs of Chinathe National Natural Science Foundation of China (Nos.10971136,10831003,61072147,11071159)+3 种基金the Chunhui Plan of the Ministry of Education of Chinathe Innovation Project of Zhejiang Province (No.T200905)the Natural Science Foundation of Shanghai (No.09ZR1410800)the Shanghai Leading Academic Discipline Project (No.J50101)
文摘A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational identities under non-degenerate,symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings.A special case of the suggested loop algebras yields nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy.
文摘A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra AM-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu pattern, which possesses tri-Hamiltonian structures. Furthermore, it can be reduced to the well-known AKNS hierarchy and BPT hierarchy. Therefore, the major result of this paper can be regarded as a unified expression integrable model of the AKNS hierarchy and the BPT hierarchy.
文摘A new Lie algebra, which is far different form the known An-1, is established, for which the corresponding loop algebra is given. From this, two isospectral problems are revealed, whose compatibility condition reads a kind of zero curvature equation, which permits Lax integrable hierarchies of soliton equations. To aim at generating Hamiltonian structures of such soliton-equation hierarchies, a beautiful Killing-Cartan form, a generalized trace functional of matrices, is given, for which a generalized Tu formula (GTF) is obtained, while the trace identity proposed by Tu Guizhang [J. Math. Phys. 30 (1989) 330] is a special case of the GTF. The computing formula on the constant γ to be determined appearing in the GTF is worked out, which ensures the exact and simple computation on it. Finally, we take two examples to reveal the applications of the theory presented in the article. In details, the first example reveals a new Liouville-integrable hierarchy of soliton equations along with two potential functions and Hamiltonian structure. To obtain the second integrable hierarchy of soliton equations, a higher-dimensional loop algebra is first constructed. Thus, the second example shows another new Liouville integrable hierarchy with 5-potential component functions and bi- Hamiltonian structure. The approach presented in the paper may be extensively used to generate other new integrable soliton-equation hierarchies with multi-Hamiltonian structures.
基金Supported by National Natural Science Foundation of China under Grant No. 70971079
文摘A new Lax integrable hierarchy is obtained by constructing an isospectraJ problem with constrained conditions. Two kinds of integrable couplings are obtained by constructing two new expanding Lie algebras of the Lie algebra Be, respectively.
基金Supported by NSF 2009J01011 of Fujian of China,NNSF (10826094)NSF 08KJD110001 of Jiangsu Educational Committee
文摘In this article, some modules over a loop Lie algebra associated to quantum plane are constructed. The isomorphism classes among these modules are also determined.
基金supported by Science Foundation of the Educational Department of Shandong Province of China
文摘A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly,as its application,the multi-component TC equation hierarchy is obtained,then by use of trace identity the Hamiltonian structure of the above system is presented.Finally,the integrable couplings of the obtained system is worked out by the expanding matrix Loop algebra.
基金The project supported by National Natural Science Foundation of China under Grant No. 50275013
文摘Two types of Lie algebras are constructed, which are directly used to deduce the two resulting integrable coupling systems with multi-component potential functions. Many other integrable couplings of the known integrable systems may be obtained by the approach.
文摘An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loop algebra [AKG~], the integrable couplings system of the NLS-MKdV equations hierarchy was obtained. As its reduction case, generalized nonlinear NLS-MKdV equations were obtained. The method proposed in this letter can be applied to other hierarchies of evolution equations.
文摘A vector loop algebra and its extended loop algebra are proposed, which are devoted to obtaining the Tu hierarchy. By making use of the extended trace identity, the Harniltonian structure of the Tu hierarchy is constructed. Furthermore, we apply the quadratic-form identity to the integrable coupling system of the Tu hierarchy.
基金The project supported by National Natural Science Foundation of China under.Grant No. 10371070
文摘A type of new loop algebra GM is constructed by making use of the concept of cycled numbers. As its application, an isospectral problem is designed and a new multi-component integrable hierarchy with multi-potential functions is worked out, which can be reduced to the famous KN hierarchy.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.J50101)the Science Foundation of Shanghai Municiple Commission of Education (Grant No.06AZ081)
文摘Based on the generalization of Lie algebra An- 1, two types of new Lie algebras were worked out and the integrability of the related hierarchies of evolution equations were proved in the sense of Liouville.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education,Science and Technology (2010-0022035)
文摘In this paper we study the properties of homotopy inverses of comultiplications and Mgebraic loops of co-H-spaces based on a wedge of spheres. We also investigate a method to construct new comultiplications out of old ones by using a group action. We are primarily interested in the algebraic loops which have inversive, power-associative and Moufang properties for some comultiplications.
文摘A new loop algebra containing four arbitrary constants is presented, -whose commutation operation is concise, and the corresponding computing formula of constant γ in the quadratic-form identity is obtained in this paper, which can be reduced to computing formula of constant γ in the trace identity. As application, a new Liouville integrable hierarchy, which can be reduced to AKNS hierarchy is derived.
基金supported by the National Natural Science Foundation of China (No.12371256)。
文摘A scheme for generating nonisospectral integrable hierarchies is introduced.Based on the method,we deduce a nonisospectral hierarchy of soliton equations by considering a linear spectral problem.It follows that the corresponding expanded isospectral and nonisospectral integrable hierarchies are deduced based on a 6 dimensional complex linear space ■.By reducing these integrable hierarchies,we obtain the expanded isospectral and nonisospectral derivative nonlinear Schr?dinger equation.By using the trace identity,the biHamiltonian structure of these two hierarchies are also obtained.Moreover,some symmetries and conserved quantities of the resulting hierarchy are discussed.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金Project supported by the Natural Science Foundation of Shanghai (Grant No. 09ZR1410800)the Science Foundation of Key Laboratory of Mathematics Mechanization (Grant No. KLMM0806)+2 种基金the Shanghai Leading Academic Discipline Project (Grant No. J50101)the Key Disciplines of Shanghai Municipality (Grant No. S30104)the National Natural Science Foundation of China (Grant Nos. 61072147 and 11071159)
文摘A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra sl(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101Key Disciplines of Shanghai Municipality (S30104)
文摘By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101by Key Disciplines of Shanghai Municipality (S30104)
文摘A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Boussinesq hierarchy with self-consistent sources by using of loop algebra sl(4). In this paper, we also point out that there exist some errors in Yu's paper and have corrected these errors and set up new formula. The method can be generalized other soliton hierarchy with self-consistent sources.
基金supported by National Natural Science Foundation of China(Grant Nos.51075259,51121063,51305256)National Basic Research Program of China(973 Program,Grant No.2006CB705400)
文摘Most researches focused on the analytical stabilized algorithm for the modular simulation of single domain, e.g., pure mechanical systems. Only little work has been performed on the problem of multi-domain simulation stability influenced by algebraic loops. In this paper, the algebraic loop problem is studied by a composite simulation method to reveal the internal relationship between simulation stability and system topologies and simulation unit models. A stability criterion of multi-domain composite simulation is established, and two algebraic loop compensation algorithms are proposed using numerical iteration and approximate function in multi-domain simulation. The numerical stabilized algorithm is the Newton method for the solution of the set of nonlinear equations, and it is used here in simulation of the system composed of mechanical system and hydraulic system. The approximate stabilized algorithm is the construction of response surface for inputs and outputs of unknown unit model, and it is utilized here in simulation of the system composed of forging system, mechanical and hydraulic system. The effectiveness of the algorithms is verified by a case study of multi-domain simulation for forging system composed of thermoplastic deformation of workpieces, mechanical system and hydraulic system of a manipulator. The system dynamics simulation results show that curves of motion and force are continuous and convergent. This paper presents two algorithms, which are applied to virtual reality simulation of forging process in a simulation platform for a manipulator, and play a key role in simulation efficiency and stability.