The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS ...The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS system, thermal power generation system and flue gas cooling and compression unit (CCU) are coupled and optimized, and the temperature and flow of the flue gas extraction are determined. The results indicate that the net plant efficiency of CLAS O2/CO2 power plant is 39.2%, which is only 3.54% lower than that of the conventional power plants without carbon capture. However, the O2/CO2 power plant based on cryogenic air separation technology brings 8% to 10% decrease in the net plant efficiency. By optimizations, the net plant efficiency increases by 1.65%. The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%. The oxygen concentration from the chemical looping air separation unit is 12.2%.展开更多
基金The National High Technology Research and Development Program of China(863 Program)(No.2012AA051801)the National Natural Science Foundation of China(No.51176033)
文摘The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS system, thermal power generation system and flue gas cooling and compression unit (CCU) are coupled and optimized, and the temperature and flow of the flue gas extraction are determined. The results indicate that the net plant efficiency of CLAS O2/CO2 power plant is 39.2%, which is only 3.54% lower than that of the conventional power plants without carbon capture. However, the O2/CO2 power plant based on cryogenic air separation technology brings 8% to 10% decrease in the net plant efficiency. By optimizations, the net plant efficiency increases by 1.65%. The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%. The oxygen concentration from the chemical looping air separation unit is 12.2%.