It is well known that a totally geodesic Lagrangian surface in a Lorentzian complex space form M12(4ε) of constant holomorphic sectional curvature 4s is of constant curvature 6. A natural question is "Besides tota...It is well known that a totally geodesic Lagrangian surface in a Lorentzian complex space form M12(4ε) of constant holomorphic sectional curvature 4s is of constant curvature 6. A natural question is "Besides totally geodesic ones how many Lagrangian surfaces of constant curvature εin M12(46) are there?" In an earlier paper an answer to this question was obtained for the case e = 0 by Chen and Fastenakels. In this paper we provide the answer to this question for the case ε≠0. Our main result states that there exist thirty-five families of Lagrangian surfaces of curvature ε in M12(4ε) with ε ≠ 0. Conversely, every Lagrangian surface of curvature ε≠0 in M12(4ε) is locally congruent to one of the Lagrangian surfaces given by the thirty-five families.展开更多
A three dimensional Lorentzian hypersurface x : M_1~3→ R_1~4 is called conformally flat if its induced metric is conformal to the flat Lorentzian metric, and this property is preserved under the conformal transformat...A three dimensional Lorentzian hypersurface x : M_1~3→ R_1~4 is called conformally flat if its induced metric is conformal to the flat Lorentzian metric, and this property is preserved under the conformal transformation of R_1~4. Using the projective light-cone model, for those whose shape operators have three distinct real eigenvalues, we calculate the integrability conditions by constructing a scalar conformal invariant and a canonical moving frame in this paper. Similar to the Riemannian case, these hypersurfaces can be determined by the solutions to some system of partial differential equations.展开更多
Contractions of the Lie algebras d = u(2), f = u(1 ,1) to the oscillator Lie algebra l are realized via the adjoint action of SU(2,2) when d, l, f are viewed as subalgebras of su(2,2). Here D, L, F are the correspondi...Contractions of the Lie algebras d = u(2), f = u(1 ,1) to the oscillator Lie algebra l are realized via the adjoint action of SU(2,2) when d, l, f are viewed as subalgebras of su(2,2). Here D, L, F are the corresponding (four-dimensional) real Lie groups endowed with bi-invariant metrics of Lorentzian signature. Similar contractions of (seven-dimensional) isometry Lie algebras iso(D), iso(F) to iso(L) are determined. The group SU(2,2) acts on each of the D, L, F by conformal transformation which is a core feature of the DLF-theory. Also, d and f are contracted to T, S-abelian subalgebras, generating parallel translations, T, and proper conformal transformations, S (from the decomposition of su(2,2) as a graded algebra T + Ω + S, where Ω is the extended Lorentz Lie algebra of dimension 7).展开更多
文摘It is well known that a totally geodesic Lagrangian surface in a Lorentzian complex space form M12(4ε) of constant holomorphic sectional curvature 4s is of constant curvature 6. A natural question is "Besides totally geodesic ones how many Lagrangian surfaces of constant curvature εin M12(46) are there?" In an earlier paper an answer to this question was obtained for the case e = 0 by Chen and Fastenakels. In this paper we provide the answer to this question for the case ε≠0. Our main result states that there exist thirty-five families of Lagrangian surfaces of curvature ε in M12(4ε) with ε ≠ 0. Conversely, every Lagrangian surface of curvature ε≠0 in M12(4ε) is locally congruent to one of the Lagrangian surfaces given by the thirty-five families.
基金supported by National Natural Science Foundation of China (Grant Nos. 11331002, 11471021 and 11601513)the Fundamental Research Funds for Central Universitiesthe Project of Fujian Provincial Department of Education (Grant No. JA15123)
文摘A three dimensional Lorentzian hypersurface x : M_1~3→ R_1~4 is called conformally flat if its induced metric is conformal to the flat Lorentzian metric, and this property is preserved under the conformal transformation of R_1~4. Using the projective light-cone model, for those whose shape operators have three distinct real eigenvalues, we calculate the integrability conditions by constructing a scalar conformal invariant and a canonical moving frame in this paper. Similar to the Riemannian case, these hypersurfaces can be determined by the solutions to some system of partial differential equations.
文摘Contractions of the Lie algebras d = u(2), f = u(1 ,1) to the oscillator Lie algebra l are realized via the adjoint action of SU(2,2) when d, l, f are viewed as subalgebras of su(2,2). Here D, L, F are the corresponding (four-dimensional) real Lie groups endowed with bi-invariant metrics of Lorentzian signature. Similar contractions of (seven-dimensional) isometry Lie algebras iso(D), iso(F) to iso(L) are determined. The group SU(2,2) acts on each of the D, L, F by conformal transformation which is a core feature of the DLF-theory. Also, d and f are contracted to T, S-abelian subalgebras, generating parallel translations, T, and proper conformal transformations, S (from the decomposition of su(2,2) as a graded algebra T + Ω + S, where Ω is the extended Lorentz Lie algebra of dimension 7).