Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as ...Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.展开更多
This editorial critically evaluates the application of foot reflexology as a treatment for sensorineural hearing loss(SNHL)in infants,as proposed in a case report published in the World of Clinical Cases.SNHL is a con...This editorial critically evaluates the application of foot reflexology as a treatment for sensorineural hearing loss(SNHL)in infants,as proposed in a case report published in the World of Clinical Cases.SNHL is a condition characterized by damage to the cochlea or the neural pathways that transmit auditory information to the brain.The etiology of SNHL is often complex,involving genetic mutations,prenatal factors,or perinatal insults.Reflexology,an alternative therapy involving the application of pressure to specific points on the feet,is based on the hypothesis that these points correspond to different organs and systems in the body,including the auditory system.However,the biological plausibility and clinical efficacy of foot reflexology in addressing SNHL lack empirical support.This editorial examines the pathophysiology of SNHL,assesses the clinical claims of reflexology practitioners,and emphasizes the necessity of evidence-based approaches in treating infant hearing loss.While complementary therapies may provide ancillary benefits,they should not supplant validated medical treatments in managing SNHL in infants.Further research is needed to evaluate the safety and efficacy of foot reflexology and other alternative therapies in pediatric audiology.展开更多
Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototox...Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.展开更多
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ...Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism.展开更多
Foot reflexology is a non-invasive and safe complementary therapy that works by massaging the reflex zones of the feet and exerts systemic or whole-body regulation through meridian nerve conduction.This therapy is com...Foot reflexology is a non-invasive and safe complementary therapy that works by massaging the reflex zones of the feet and exerts systemic or whole-body regulation through meridian nerve conduction.This therapy is commonly used in the treatment of various conditions such as autism and Parkinson's disease.However,there is limited reporting on the use of foot reflexology therapy for infants with sensorineural hearing loss(SNHL).Currently,there is no definitive conclusion on how foot reflexology therapy can influence hearing.This editorial holds some guiding significance regarding this clinical issue.The aim is to present physiological evidence of how foot reflexology therapy can impact infants with SNHL,thereby enhancing clinician’s awareness of foot reflexology in treating infants with SNHL.展开更多
Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Her...Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Here,we present evidence suggesting that the lysine-specific demethylase 1 inhibitor–tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss,and elucidate its underlying regulatory mechanisms.We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 d B for 4 hours.We found that tranylcypromine treatment led to the upregulation of Sestrin2(SESN2)and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine.The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click,4,8,and 16 k Hz frequencies compared with the noise exposure group treated with saline.These findings indicate that tranylcypromine treatment resulted in increased SESN2,light chain 3B,and lysosome-associated membrane glycoprotein 1 expression after noise exposure,leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3,thereby reducing noise-induced hair cell loss.Additionally,immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway.Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domaincontaining 3(NLRP3)production.In conclusion,our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2,which induced autophagy,thereby restricting NLRP3-related inflammasome signaling,alleviating cochlear hair cell loss,and protecting hearing function.These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.展开更多
Early intervention for sensorineural hearing loss(SNHL)in childhood is crucial for auditory and language development.In recent years,innovative auditory stimulation techniques and speech therapy strategies,such as mid...Early intervention for sensorineural hearing loss(SNHL)in childhood is crucial for auditory and language development.In recent years,innovative auditory stimulation techniques and speech therapy strategies,such as middle ear implants,cochlear implants,auditory brainstem implants,and midbrain implants,have provided new avenues for improving patient outcomes.Additionally,basic research advancements in cell reprogramming and regeneration,stem cell therapy,and targeted drug delivery offer promising approaches to meet the individualized needs of children with SNHL.However,many challenges and unresolved issues remain in the treatment of SNHL.This article comments on the case report,which describes a female pediatric patient with SNHL who underwent foot reflexology which led to the normalization of hearing thresholds.Reflexology is considered to have potential benefits in physical rehabilitation,but its efficacy in hearing restoration requires further scientific validation through rigorous clinical trials and large-scale prospective studies.展开更多
In this paper, the Automated Actuarial Loss Reserving Model is developed and extended using machine learning. The traditional actuarial reserving techniques are no longer compatible with the increase in technological ...In this paper, the Automated Actuarial Loss Reserving Model is developed and extended using machine learning. The traditional actuarial reserving techniques are no longer compatible with the increase in technological advancement currently at hand. As a result, the development of the alternative Artificial Intelligence Based Automated Actuarial Loss Reserving Methodology which captures diverse risk profiles for various policyholders through augmenting the Micro Finance services, Auto Insurance Services and Both Services lines of business on the same platform through the computation of the Comprehensive Automated Actuarial Loss Reserves (CAALR) has been implemented in this paper. The introduction of the four further types of actuarial loss reserves to those existing in the actuarial literature seems to significantly reduce lapse rates, reduce the reinsurance costs as well as expenses and outgo. As a matter of consequence, this helps to bring together a combination of new and existing policyholders in the insurance company. The frequency severity models have been extended in this paper using ten machine learning algorithms which ultimately leads to the derivation of the proposed machine learning-based actuarial loss reserving model which remarkably performed well when compared to the traditional chain ladder actuarial reserving method using simulated data.展开更多
BACKGROUND The common clinical method to evaluate blood loss during pancreaticoduoden-ectomy(PD)is visual inspection,but most scholars believe that this method is extremely subjective and inaccurate.Currently,there is...BACKGROUND The common clinical method to evaluate blood loss during pancreaticoduoden-ectomy(PD)is visual inspection,but most scholars believe that this method is extremely subjective and inaccurate.Currently,there is no accurate,objective me-thod to evaluate the amount of blood loss in PD patients.We retrospectively analyzed the clinical data of 341 patients who underwent PD in Shandong Provincial Hospital from March 2017 to February 2019.According to different surgical methods,they were divided into an open PD(OPD)group and a laparoscopic PD(LPD)group.The differences and correlations between the in-traoperative estimation of blood loss(IEBL)obtained by visual inspection and the intraoperative calculation of blood loss(ICBL)obtained using the Hb loss method were analyzed.ICBL,IEBL and perioperative calculation of blood loss(PCBL)were compared between the two groups,and single-factor regression analysis was performed.RESULTS There was no statistically significant difference in the preoperative general patient information between the two groups(P>0.05).PD had an ICBL of 743.2(393.0,1173.1)mL and an IEBL of 100.0(50.0,300.0)mL(P<0.001).There was also a certain correlation between the two(r=0.312,P<0.001).Single-factor analysis of ICBL showed that a history of diabetes[95%confidence interval(CI):53.82-549.62;P=0.017]was an independent risk factor for ICBL.In addition,the single-factor analysis of PCBL showed that body mass index(BMI)(95%CI:0.62-76.75;P=0.046)and preoperative total bilirubin>200μmol/L(95%CI:7.09-644.26;P=0.045)were independent risk factors for PCBL.The ICBLs of the LPD group and OPD group were 767.7(435.4,1249.0)mL and 663.8(347.7,1138.2)mL,respectively(P>0.05).The IEBL of the LPD group 200.0(50.0,200.0)mL was slightly greater than that of the OPD group 100.0(50.0,300.0)mL(P>0.05).PCBL was greater in the LPD group than the OPD group[1061.6(612.3,1632.3)mL vs 806.1(375.9,1347.6)mL](P<0.05).CONCLUSION The ICBL in patients who underwent PD was greater than the IEBL,but there is a certain correlation between the two.The Hb loss method can be used to evaluate intraoperative blood loss.A history of diabetes,preoperative bilirubin>200μmol/L and high BMI increase the patient's risk of bleeding.展开更多
Hearing loss has caused serious social effects among people living with it. Those who relate to patients with hearing loss (PHL) also share some part of the negative effects. Some specifics are communication disabilit...Hearing loss has caused serious social effects among people living with it. Those who relate to patients with hearing loss (PHL) also share some part of the negative effects. Some specifics are communication disability, which impacts speech and language development, academic performance, and social or work life. In previous years, the problem was predicted to be aggravated as the expected life span of the population increased. The study was conducted among PHL and their family members in JUTH and Kazahyet Audiology Service in Jos. 150 PHL were purposively sampled. The study was guided by a Cross-sectional Survey Research Design, and the specific objectives were to (1) identify the social effects of hearing loss on the PHL, (2) determine the implication of social effects on PHL, and (3) determine the extent at which these social effects affect PHL. The outcome of the study shows that the social effects faced by PHL are poor relationships, no secrets, dependence on sign language, frustration, depression, and dependence on lip reading. Some stop schooling, and others feel laughed at and therefore choose the path of isolation. The implication is that hearing loss is expensive to manage. PHL always feel they are not contributing their quarter in life as usual;they feel stigmatized and are not easy to relate with. The study recommends that the government should come up with policies that will check man-made behaviors that exert negative social effects on PHL in our society, subsidize the cost of hearing aids and cochlear implants to be affordable for PHL, formulate a policy on mandatory newborn hearing screening before the infant is discharged from the hospital to help in the early identification of hearing loss. Finally, the early creation of awareness of the dangers or consequences of hearing loss will go a long way in preventing our society from involvement in high-risk behaviors that will cause hearing loss.展开更多
A full-frequency instant core-loss equation built from the induction physical model of magnetic materials, where the iron loss, eddy loss, and hysteresis loss no longer have an integral term, and this new equation pro...A full-frequency instant core-loss equation built from the induction physical model of magnetic materials, where the iron loss, eddy loss, and hysteresis loss no longer have an integral term, and this new equation provides high simulation accuracy and performs dynamic core loss analysis on non-sinusoidal or pulse magnetic fields. The simulation examples use a high-grade electrical steel sheet 65CS400 by Epstein experimental data covering magnetic field 0.1 - 1.8 T and frequency 50 - 5000 Hz, and the average error of the simulated core loss is less than 4%. Since the simulation is converged by magnetic physical parameters, so the physical relevance of the similar laminated materials can be compared with the coefficient results. .展开更多
Losses due to hazards are inevitable and numerical simulations for estimations are complex.This study proposes a model for estimating correlated seismic damages and losses of a water supply pipeline system as an alter...Losses due to hazards are inevitable and numerical simulations for estimations are complex.This study proposes a model for estimating correlated seismic damages and losses of a water supply pipeline system as an alternative for numerical simulations.The common approach in other research shows average damage spots per mesh estimated statistically independent to one another.Spatially distributed lifeline systems,such as water supply pipelines,are interconnected,and seismic spatial variability affects the damages across the region;thus,spatial correlation of damage spots is an important factor in target areas for portfolio loss estimation.Generally,simulations are used to estimate possible losses;however,these assume each damage behaves independently and uncorrelated.This paper assumed that damages per mesh behave in a Poisson distribution to avoid over-dispersion and eliminate negative losses in estimations.The purpose of this study is to obtain a probabilistic portfolio loss model of an extensive water supply area.The proposed model was compared to the numerical simulation data with the correlated Poisson distribution.The application of the Normal To Anything(NORTA)obtained correlations for Poisson Distributions.The proposed probabilistic portfolio loss model,based on the generalized linear model and central limit theory,estimated the possible losses,such as the Probable Maximum Loss(PML,90%non-exceedance)or Normal Expected Loss(NEL,50%non-exceedance).The proposed model can be used in other lifeline systems as well,though additional investigation is needed for confirmation.From the estimations,a seismic physical portfolio loss for the water supply system was presented.The portfolio was made to show possible outcomes for the system.The proposed method was tested and analyzed using an artificial field and a location-based scenario of a water supply pipeline system.This would aid in pre-disaster planning and would require only a few steps and time.展开更多
BACKGROUND Our study contributes to the further understanding of the mechanism of foot reflexology.Foot reflexology has been reported to affect hearing recovery,but no physiological evidence has been provided.This lac...BACKGROUND Our study contributes to the further understanding of the mechanism of foot reflexology.Foot reflexology has been reported to affect hearing recovery,but no physiological evidence has been provided.This lack of evidence hampers the acceptance of the technique in clinical practice.CASE SUMMARY A girl was taken to North Sichuan Medical University Affiliated Hospital for a hearing screen by her parents.Her parents reported that her hearing level was the same as when she was born.The girl was diagnosed with sensorineural hearing loss(SNHL)by a doctor in the otolaryngology department.After we introduced the foot reflexology project,the parents agreed to participate in the experiment.After 6 months of foot reflexology treatment,the hearing threshold of the girl recovered to a normal level,below 30 dB.CONCLUSION Foot reflexology should be encouraged in clinical practice and for families of infants with SNHL.展开更多
During air injection into an oil reservoir,an oxidation reaction generates some heat to raise the reservoir temperature.When the reservoir temperature reaches an ignition temperature,spontaneous ignition occurs.There ...During air injection into an oil reservoir,an oxidation reaction generates some heat to raise the reservoir temperature.When the reservoir temperature reaches an ignition temperature,spontaneous ignition occurs.There is a time delay from the injection to ignition.There are mixed results regarding the feasibility of spontaneous ignition in real-field projects and in laboratory experiments.No analytical model is available in the literature to estimate the oxidation time required to reach spontaneous ignition with heat loss.This paper discusses the feasibility of spontaneous ignition from theoretical points and experimental and field project observations.An analytical model considering heat loss is proposed.Analytical models with and without heat loss investigate the factors that affect spontaneous ignition.Based on the discussion and investigations,we find that it is more difficult for spontaneous ignition to occur in laboratory experiments than in oil reservoirs;spontaneous ignition is strongly affected by the initial reservoir temperature,oil activity,and heat loss;spontaneous ignition is only possible when the initial reservoir temperature is high,the oil oxidation rate is high,and the heat loss is low.展开更多
Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal m...Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.展开更多
Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e...Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.展开更多
To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simu...To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.展开更多
Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as ...Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.展开更多
During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtr...During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtration performance remains a challenge.Herein,a micro-crosslinked amphoteric hydrophobic association copolymer(i.e.,DADC)was synthesized using N,N-dimethyl acrylamide,diallyl dimethyl ammonium chloride,2-acrylamido-2-methylpropane sulfonic acid,hydrophobic monomer,and pentaerythritol triallyl ether crosslinker.Due to the synergistic effects of hydrogen bonds,electrostatic interaction,hydrophobic association,and micro-crosslinking,the DADC copolymer exhibited outstanding temperature-and salt-resistance.The rheological experiments have shown that the DADC copolymer had excellent shear dilution performance and a certain degree of salt-responsive viscosity-increasing performance.The DADC copolymer could effectively adsorb on the surface of bentonite particles through electrostatic interaction and hydrogen bonds,which bring more negative charge to the bentonite,thus improving the hydration and dispersion of bentonite particles as well as the colloidal stability of the drilling fluids.Moreover,the drilling fluids constructed based on the DADC copolymer exhibited satisfactory rheological and filtration properties(FLHTHP=12 m L)after aging at high temperatures(up to200℃)and high salinity(saturated salt)environments.Therefore,this work provided new insights into designing and fabricating high-performance drilling fluid treatment agents,demonstrating good potential applications in deep and ultradeep drilling engineering.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81800919(to YX),82171140(to PW)the International Cooperation and Exchange of the National Natural Science Foundation of China,Nos.82020108008(to HS),81720108010(to SY).
文摘Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.
文摘This editorial critically evaluates the application of foot reflexology as a treatment for sensorineural hearing loss(SNHL)in infants,as proposed in a case report published in the World of Clinical Cases.SNHL is a condition characterized by damage to the cochlea or the neural pathways that transmit auditory information to the brain.The etiology of SNHL is often complex,involving genetic mutations,prenatal factors,or perinatal insults.Reflexology,an alternative therapy involving the application of pressure to specific points on the feet,is based on the hypothesis that these points correspond to different organs and systems in the body,including the auditory system.However,the biological plausibility and clinical efficacy of foot reflexology in addressing SNHL lack empirical support.This editorial examines the pathophysiology of SNHL,assesses the clinical claims of reflexology practitioners,and emphasizes the necessity of evidence-based approaches in treating infant hearing loss.While complementary therapies may provide ancillary benefits,they should not supplant validated medical treatments in managing SNHL in infants.Further research is needed to evaluate the safety and efficacy of foot reflexology and other alternative therapies in pediatric audiology.
文摘Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.
基金supported by National Natural Science Foundation of China(NSFC 52432002,52372041,52302087)Heilongjiang Touyan Team Program,the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021003)the Shanghai Aerospace Science and Technology Innovation Fund(SAST2022-60).
文摘Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism.
基金Supported by the Fundamental Research Funds for the Central Universities,No.2022CDJYGRH-004.
文摘Foot reflexology is a non-invasive and safe complementary therapy that works by massaging the reflex zones of the feet and exerts systemic or whole-body regulation through meridian nerve conduction.This therapy is commonly used in the treatment of various conditions such as autism and Parkinson's disease.However,there is limited reporting on the use of foot reflexology therapy for infants with sensorineural hearing loss(SNHL).Currently,there is no definitive conclusion on how foot reflexology therapy can influence hearing.This editorial holds some guiding significance regarding this clinical issue.The aim is to present physiological evidence of how foot reflexology therapy can impact infants with SNHL,thereby enhancing clinician’s awareness of foot reflexology in treating infants with SNHL.
基金supported by the National Key Research and Development Program of China,No.2022YFC2402701(to WC)Key International(Regional)Joint Research Program of the National Natural Science Foundation of China,No.81820108009(to SY)+5 种基金the National Natural Science Foundation of China,Nos.81970890(to WC)and 82371148(to WG)Fujian Provincial Healthcare Young and Middle-aged Backbone Talent Training Project,No.2023GGA035(to XC)Spring City Planthe High-level Talent Promotion and Training Project of Kunming,No.2022SCP001(to SY)the Natural Science Foundation of Hainan Province of China,No.824MS052(to XS)the Sixth Medical Center of Chinese PLA General Hospital Innovation Cultivation,No.CXPY202116(to LX)。
文摘Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Here,we present evidence suggesting that the lysine-specific demethylase 1 inhibitor–tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss,and elucidate its underlying regulatory mechanisms.We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 d B for 4 hours.We found that tranylcypromine treatment led to the upregulation of Sestrin2(SESN2)and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine.The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click,4,8,and 16 k Hz frequencies compared with the noise exposure group treated with saline.These findings indicate that tranylcypromine treatment resulted in increased SESN2,light chain 3B,and lysosome-associated membrane glycoprotein 1 expression after noise exposure,leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3,thereby reducing noise-induced hair cell loss.Additionally,immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway.Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domaincontaining 3(NLRP3)production.In conclusion,our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2,which induced autophagy,thereby restricting NLRP3-related inflammasome signaling,alleviating cochlear hair cell loss,and protecting hearing function.These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.
文摘Early intervention for sensorineural hearing loss(SNHL)in childhood is crucial for auditory and language development.In recent years,innovative auditory stimulation techniques and speech therapy strategies,such as middle ear implants,cochlear implants,auditory brainstem implants,and midbrain implants,have provided new avenues for improving patient outcomes.Additionally,basic research advancements in cell reprogramming and regeneration,stem cell therapy,and targeted drug delivery offer promising approaches to meet the individualized needs of children with SNHL.However,many challenges and unresolved issues remain in the treatment of SNHL.This article comments on the case report,which describes a female pediatric patient with SNHL who underwent foot reflexology which led to the normalization of hearing thresholds.Reflexology is considered to have potential benefits in physical rehabilitation,but its efficacy in hearing restoration requires further scientific validation through rigorous clinical trials and large-scale prospective studies.
文摘In this paper, the Automated Actuarial Loss Reserving Model is developed and extended using machine learning. The traditional actuarial reserving techniques are no longer compatible with the increase in technological advancement currently at hand. As a result, the development of the alternative Artificial Intelligence Based Automated Actuarial Loss Reserving Methodology which captures diverse risk profiles for various policyholders through augmenting the Micro Finance services, Auto Insurance Services and Both Services lines of business on the same platform through the computation of the Comprehensive Automated Actuarial Loss Reserves (CAALR) has been implemented in this paper. The introduction of the four further types of actuarial loss reserves to those existing in the actuarial literature seems to significantly reduce lapse rates, reduce the reinsurance costs as well as expenses and outgo. As a matter of consequence, this helps to bring together a combination of new and existing policyholders in the insurance company. The frequency severity models have been extended in this paper using ten machine learning algorithms which ultimately leads to the derivation of the proposed machine learning-based actuarial loss reserving model which remarkably performed well when compared to the traditional chain ladder actuarial reserving method using simulated data.
基金Supported by Shandong Provincial Natural Science Foundation General Project,No.ZR2020MH248。
文摘BACKGROUND The common clinical method to evaluate blood loss during pancreaticoduoden-ectomy(PD)is visual inspection,but most scholars believe that this method is extremely subjective and inaccurate.Currently,there is no accurate,objective me-thod to evaluate the amount of blood loss in PD patients.We retrospectively analyzed the clinical data of 341 patients who underwent PD in Shandong Provincial Hospital from March 2017 to February 2019.According to different surgical methods,they were divided into an open PD(OPD)group and a laparoscopic PD(LPD)group.The differences and correlations between the in-traoperative estimation of blood loss(IEBL)obtained by visual inspection and the intraoperative calculation of blood loss(ICBL)obtained using the Hb loss method were analyzed.ICBL,IEBL and perioperative calculation of blood loss(PCBL)were compared between the two groups,and single-factor regression analysis was performed.RESULTS There was no statistically significant difference in the preoperative general patient information between the two groups(P>0.05).PD had an ICBL of 743.2(393.0,1173.1)mL and an IEBL of 100.0(50.0,300.0)mL(P<0.001).There was also a certain correlation between the two(r=0.312,P<0.001).Single-factor analysis of ICBL showed that a history of diabetes[95%confidence interval(CI):53.82-549.62;P=0.017]was an independent risk factor for ICBL.In addition,the single-factor analysis of PCBL showed that body mass index(BMI)(95%CI:0.62-76.75;P=0.046)and preoperative total bilirubin>200μmol/L(95%CI:7.09-644.26;P=0.045)were independent risk factors for PCBL.The ICBLs of the LPD group and OPD group were 767.7(435.4,1249.0)mL and 663.8(347.7,1138.2)mL,respectively(P>0.05).The IEBL of the LPD group 200.0(50.0,200.0)mL was slightly greater than that of the OPD group 100.0(50.0,300.0)mL(P>0.05).PCBL was greater in the LPD group than the OPD group[1061.6(612.3,1632.3)mL vs 806.1(375.9,1347.6)mL](P<0.05).CONCLUSION The ICBL in patients who underwent PD was greater than the IEBL,but there is a certain correlation between the two.The Hb loss method can be used to evaluate intraoperative blood loss.A history of diabetes,preoperative bilirubin>200μmol/L and high BMI increase the patient's risk of bleeding.
文摘Hearing loss has caused serious social effects among people living with it. Those who relate to patients with hearing loss (PHL) also share some part of the negative effects. Some specifics are communication disability, which impacts speech and language development, academic performance, and social or work life. In previous years, the problem was predicted to be aggravated as the expected life span of the population increased. The study was conducted among PHL and their family members in JUTH and Kazahyet Audiology Service in Jos. 150 PHL were purposively sampled. The study was guided by a Cross-sectional Survey Research Design, and the specific objectives were to (1) identify the social effects of hearing loss on the PHL, (2) determine the implication of social effects on PHL, and (3) determine the extent at which these social effects affect PHL. The outcome of the study shows that the social effects faced by PHL are poor relationships, no secrets, dependence on sign language, frustration, depression, and dependence on lip reading. Some stop schooling, and others feel laughed at and therefore choose the path of isolation. The implication is that hearing loss is expensive to manage. PHL always feel they are not contributing their quarter in life as usual;they feel stigmatized and are not easy to relate with. The study recommends that the government should come up with policies that will check man-made behaviors that exert negative social effects on PHL in our society, subsidize the cost of hearing aids and cochlear implants to be affordable for PHL, formulate a policy on mandatory newborn hearing screening before the infant is discharged from the hospital to help in the early identification of hearing loss. Finally, the early creation of awareness of the dangers or consequences of hearing loss will go a long way in preventing our society from involvement in high-risk behaviors that will cause hearing loss.
文摘A full-frequency instant core-loss equation built from the induction physical model of magnetic materials, where the iron loss, eddy loss, and hysteresis loss no longer have an integral term, and this new equation provides high simulation accuracy and performs dynamic core loss analysis on non-sinusoidal or pulse magnetic fields. The simulation examples use a high-grade electrical steel sheet 65CS400 by Epstein experimental data covering magnetic field 0.1 - 1.8 T and frequency 50 - 5000 Hz, and the average error of the simulated core loss is less than 4%. Since the simulation is converged by magnetic physical parameters, so the physical relevance of the similar laminated materials can be compared with the coefficient results. .
文摘Losses due to hazards are inevitable and numerical simulations for estimations are complex.This study proposes a model for estimating correlated seismic damages and losses of a water supply pipeline system as an alternative for numerical simulations.The common approach in other research shows average damage spots per mesh estimated statistically independent to one another.Spatially distributed lifeline systems,such as water supply pipelines,are interconnected,and seismic spatial variability affects the damages across the region;thus,spatial correlation of damage spots is an important factor in target areas for portfolio loss estimation.Generally,simulations are used to estimate possible losses;however,these assume each damage behaves independently and uncorrelated.This paper assumed that damages per mesh behave in a Poisson distribution to avoid over-dispersion and eliminate negative losses in estimations.The purpose of this study is to obtain a probabilistic portfolio loss model of an extensive water supply area.The proposed model was compared to the numerical simulation data with the correlated Poisson distribution.The application of the Normal To Anything(NORTA)obtained correlations for Poisson Distributions.The proposed probabilistic portfolio loss model,based on the generalized linear model and central limit theory,estimated the possible losses,such as the Probable Maximum Loss(PML,90%non-exceedance)or Normal Expected Loss(NEL,50%non-exceedance).The proposed model can be used in other lifeline systems as well,though additional investigation is needed for confirmation.From the estimations,a seismic physical portfolio loss for the water supply system was presented.The portfolio was made to show possible outcomes for the system.The proposed method was tested and analyzed using an artificial field and a location-based scenario of a water supply pipeline system.This would aid in pre-disaster planning and would require only a few steps and time.
基金Graduate Student Project of Xi’an International Studies University,No.2021BS012Nanchong City-Universities Project,No.22SXCXTD0004.
文摘BACKGROUND Our study contributes to the further understanding of the mechanism of foot reflexology.Foot reflexology has been reported to affect hearing recovery,but no physiological evidence has been provided.This lack of evidence hampers the acceptance of the technique in clinical practice.CASE SUMMARY A girl was taken to North Sichuan Medical University Affiliated Hospital for a hearing screen by her parents.Her parents reported that her hearing level was the same as when she was born.The girl was diagnosed with sensorineural hearing loss(SNHL)by a doctor in the otolaryngology department.After we introduced the foot reflexology project,the parents agreed to participate in the experiment.After 6 months of foot reflexology treatment,the hearing threshold of the girl recovered to a normal level,below 30 dB.CONCLUSION Foot reflexology should be encouraged in clinical practice and for families of infants with SNHL.
基金supported by the National Natural Science Foundation of China (No.51974334)Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ107)local efficient reform and development funds for personnel training projects supported by the central government,Heilongjiang Postdoctoral Scientific Research Fund (LBH-Q21012)。
文摘During air injection into an oil reservoir,an oxidation reaction generates some heat to raise the reservoir temperature.When the reservoir temperature reaches an ignition temperature,spontaneous ignition occurs.There is a time delay from the injection to ignition.There are mixed results regarding the feasibility of spontaneous ignition in real-field projects and in laboratory experiments.No analytical model is available in the literature to estimate the oxidation time required to reach spontaneous ignition with heat loss.This paper discusses the feasibility of spontaneous ignition from theoretical points and experimental and field project observations.An analytical model considering heat loss is proposed.Analytical models with and without heat loss investigate the factors that affect spontaneous ignition.Based on the discussion and investigations,we find that it is more difficult for spontaneous ignition to occur in laboratory experiments than in oil reservoirs;spontaneous ignition is strongly affected by the initial reservoir temperature,oil activity,and heat loss;spontaneous ignition is only possible when the initial reservoir temperature is high,the oil oxidation rate is high,and the heat loss is low.
基金support from the National Natural Science Foundation of China(No.62174152)。
文摘Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.
基金supported by the National Key Research and Development Program of China (2021YFA0805902,2022YFF0710703)National Natural Science Foundation of China (32201257)+1 种基金Science and Technology Innovation Project of Xiongan New Area (2022XAGG0121)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2019QNRC001)。
文摘Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.
基金supported by the Chinese-Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project BASIC (Grant No.325440)the Horizon 2020 project APPLICATE (Grant No.727862)High-performance computing and storage resources were performed on resources provided by Sigma2 - the National Infrastructure for High-Performance Computing and Data Storage in Norway (through projects NS8121K,NN8121K,NN2345K,NS2345K,NS9560K,NS9252K,and NS9034K)。
文摘To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean Government(the Ministry of Science and ICT(MSIT))(No.2021R1A2C2006013)the Bio&Medical Technology Development Program of the NRF funded by the Korean government(MSIT)(No.RS-2023-00223591)the Korea Medical Device Development Fund grant funded by the Korean government(the MSIT,the MOTIE,the Ministry of Health and Welfare,the Ministry of Food and Drug Safety)(NTIS Number:9991006781,KMDF_PR_(2)0200901_0108)。
文摘Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.
基金the National Natural Science Foundation of China(No.52204023)China Postdoctoral Science Foundation(2022M713465)Postdoctoral Innovation Talent Support of Shandong Province(SDBX2022033)。
文摘During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtration performance remains a challenge.Herein,a micro-crosslinked amphoteric hydrophobic association copolymer(i.e.,DADC)was synthesized using N,N-dimethyl acrylamide,diallyl dimethyl ammonium chloride,2-acrylamido-2-methylpropane sulfonic acid,hydrophobic monomer,and pentaerythritol triallyl ether crosslinker.Due to the synergistic effects of hydrogen bonds,electrostatic interaction,hydrophobic association,and micro-crosslinking,the DADC copolymer exhibited outstanding temperature-and salt-resistance.The rheological experiments have shown that the DADC copolymer had excellent shear dilution performance and a certain degree of salt-responsive viscosity-increasing performance.The DADC copolymer could effectively adsorb on the surface of bentonite particles through electrostatic interaction and hydrogen bonds,which bring more negative charge to the bentonite,thus improving the hydration and dispersion of bentonite particles as well as the colloidal stability of the drilling fluids.Moreover,the drilling fluids constructed based on the DADC copolymer exhibited satisfactory rheological and filtration properties(FLHTHP=12 m L)after aging at high temperatures(up to200℃)and high salinity(saturated salt)environments.Therefore,this work provided new insights into designing and fabricating high-performance drilling fluid treatment agents,demonstrating good potential applications in deep and ultradeep drilling engineering.