A design analysis of a mixing nozzle was performed using a combination of probabilistic and optimization techniques. A novel approach was utilized where probabilistic analysis was used to reduce the number of geometri...A design analysis of a mixing nozzle was performed using a combination of probabilistic and optimization techniques. A novel approach was utilized where probabilistic analysis was used to reduce the number of geometric constraints based on sensitivity factors. An optimization algorithm used only the most significant parameters to maximize mixing. A second probabilistic analysis was performed after optimization was com-plete in order to quantitatively predict the effects of manufacturing tolerances on mixing performance. This process for automated design is attractive over full parameter optimization techniques due to the computa-tional efficiency resulting from an intelligent reduction in evaluated variables.展开更多
As a matter of fact,most natural structures are complex topology structures with intricate holes or irregular surface morphology.These structures can be used as lightweight infill,porous scaffold,energy absorber or mi...As a matter of fact,most natural structures are complex topology structures with intricate holes or irregular surface morphology.These structures can be used as lightweight infill,porous scaffold,energy absorber or micro-reactor.With the rapid advancement of 3D printing,the complex topology structures can now be efficiently and accurately fabricated by stacking layered materials.The novel manufacturing technology and application background put forward new demands and challenges to the current design methodologies of complex topology structures.In this paper,a brief review on the development of recent complex topology structure design methods was provided;meanwhile,the limitations of existing methods and future work are also discussed in the end.展开更多
Computational simulations can accelerate the design and modelling of origami robots and mechanisms.This paper presents a computational method using algorithms developed in Python to generate different tessellated orig...Computational simulations can accelerate the design and modelling of origami robots and mechanisms.This paper presents a computational method using algorithms developed in Python to generate different tessellated origami crease patterns simultaneously.This paper aims to automate this process by introducing a system that automatically generates origami crease patterns in Scalable Vector Graphics format.By introducing different parameters,variations of the same underlying tessellated crease pattern can be obtained.The user interface consists of an input file where the user can input the desired parameters,which are then processed by an algorithm written in Python to generate the respective origami 2D crease patterns.These origami crease patterns can serve as inputs to current origami design software and algorithms to generate origami design models for faster and easier visual comparison.This paper utilizes a basic biomimetic inspiration origami pattern to demonstrate the functionality by varying underlying crease pattern parameters that give rise to symmetric and asymmetric spring origami 3D structures.Furthermore,this paper conducts a qualitative analysis of the origami design outputs of an origami simulator from the input crease patterns and the respective manual folding of the origami structure.展开更多
文摘A design analysis of a mixing nozzle was performed using a combination of probabilistic and optimization techniques. A novel approach was utilized where probabilistic analysis was used to reduce the number of geometric constraints based on sensitivity factors. An optimization algorithm used only the most significant parameters to maximize mixing. A second probabilistic analysis was performed after optimization was com-plete in order to quantitatively predict the effects of manufacturing tolerances on mixing performance. This process for automated design is attractive over full parameter optimization techniques due to the computa-tional efficiency resulting from an intelligent reduction in evaluated variables.
基金supported by Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51521064)the National Nature Science Foundation of China(No.51575483).
文摘As a matter of fact,most natural structures are complex topology structures with intricate holes or irregular surface morphology.These structures can be used as lightweight infill,porous scaffold,energy absorber or micro-reactor.With the rapid advancement of 3D printing,the complex topology structures can now be efficiently and accurately fabricated by stacking layered materials.The novel manufacturing technology and application background put forward new demands and challenges to the current design methodologies of complex topology structures.In this paper,a brief review on the development of recent complex topology structure design methods was provided;meanwhile,the limitations of existing methods and future work are also discussed in the end.
基金supported by the Chinese University of Hong Kong(CUHK)Direct Grant(4055139)for a research project on Multiphysics Study of Magnetically Deployable Robotic Collapsible Structures.
文摘Computational simulations can accelerate the design and modelling of origami robots and mechanisms.This paper presents a computational method using algorithms developed in Python to generate different tessellated origami crease patterns simultaneously.This paper aims to automate this process by introducing a system that automatically generates origami crease patterns in Scalable Vector Graphics format.By introducing different parameters,variations of the same underlying tessellated crease pattern can be obtained.The user interface consists of an input file where the user can input the desired parameters,which are then processed by an algorithm written in Python to generate the respective origami 2D crease patterns.These origami crease patterns can serve as inputs to current origami design software and algorithms to generate origami design models for faster and easier visual comparison.This paper utilizes a basic biomimetic inspiration origami pattern to demonstrate the functionality by varying underlying crease pattern parameters that give rise to symmetric and asymmetric spring origami 3D structures.Furthermore,this paper conducts a qualitative analysis of the origami design outputs of an origami simulator from the input crease patterns and the respective manual folding of the origami structure.