A linear directed forest is a directed graph in which every component is a directed path.The linear arboricity la(D) of a digraph D is the minimum number of linear directed forests in D whose union covers all arcs of ...A linear directed forest is a directed graph in which every component is a directed path.The linear arboricity la(D) of a digraph D is the minimum number of linear directed forests in D whose union covers all arcs of D. For every d-regular digraph D, Nakayama and P′eroche conjecture that la(D) = d + 1. In this paper, we consider the linear arboricity for complete symmetric digraphs,regular digraphs with high directed girth and random regular digraphs and we improve some wellknown results. Moreover, we propose a more precise conjecture about the linear arboricity for regular digraphs.展开更多
基金Supported by NSFC(Grant Nos.11601093 and 11671296)
文摘A linear directed forest is a directed graph in which every component is a directed path.The linear arboricity la(D) of a digraph D is the minimum number of linear directed forests in D whose union covers all arcs of D. For every d-regular digraph D, Nakayama and P′eroche conjecture that la(D) = d + 1. In this paper, we consider the linear arboricity for complete symmetric digraphs,regular digraphs with high directed girth and random regular digraphs and we improve some wellknown results. Moreover, we propose a more precise conjecture about the linear arboricity for regular digraphs.