Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw...Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△.展开更多
An acyclic edge coloring of a graph is a proper edge coloring such that every cycle contains edges of at least three distinct colors. The acyclic chromatic index of a graph G, denoted by a'(G), is the minimum numbe...An acyclic edge coloring of a graph is a proper edge coloring such that every cycle contains edges of at least three distinct colors. The acyclic chromatic index of a graph G, denoted by a'(G), is the minimum number k such that there is an acyclic edge coloring using k colors. It is known that a'(G) ≤ 16△ for every graph G where △denotes the maximum degree of G. We prove that a'(G) 〈 13.8A for an arbitrary graph G. We also reduce the upper bounds of a'(G) to 9.8△ and 9△ with girth 5 and 7, respectively.展开更多
An r-acyclic edge chromatic number of a graph G,denoted by α'r(G),is the minimum number of colors used to produce an edge coloring of the graph such that adjacent edges receive different colors and every cycle C h...An r-acyclic edge chromatic number of a graph G,denoted by α'r(G),is the minimum number of colors used to produce an edge coloring of the graph such that adjacent edges receive different colors and every cycle C has at least min {|C|,r} colors.We prove that α'r(G) ≤(4r + 1)△(G),when the girth of the graph G equals to max{50,△A(G)} and 4 ≤ r ≤ 7.If we relax the restriction of the girth to max {220,A(G)},the upper bound of a'r(G) is not larger than(2r + 5)△(G) with 4 ≤r≤ 10.展开更多
基金the Natural Science Foundation of Gansu Province (No. 3ZS051-A25-025) the Foundation of Gansu Provincial Department of Education (No. 0501-03).
文摘Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△.
基金Supported by the National Natural Science Foundation of China(No.11371355)
文摘An acyclic edge coloring of a graph is a proper edge coloring such that every cycle contains edges of at least three distinct colors. The acyclic chromatic index of a graph G, denoted by a'(G), is the minimum number k such that there is an acyclic edge coloring using k colors. It is known that a'(G) ≤ 16△ for every graph G where △denotes the maximum degree of G. We prove that a'(G) 〈 13.8A for an arbitrary graph G. We also reduce the upper bounds of a'(G) to 9.8△ and 9△ with girth 5 and 7, respectively.
基金Supported by the National Natural Science Foundation of China(No.11371355)
文摘An r-acyclic edge chromatic number of a graph G,denoted by α'r(G),is the minimum number of colors used to produce an edge coloring of the graph such that adjacent edges receive different colors and every cycle C has at least min {|C|,r} colors.We prove that α'r(G) ≤(4r + 1)△(G),when the girth of the graph G equals to max{50,△A(G)} and 4 ≤ r ≤ 7.If we relax the restriction of the girth to max {220,A(G)},the upper bound of a'r(G) is not larger than(2r + 5)△(G) with 4 ≤r≤ 10.