We investigate analytically the effect of initial stress in piezoelectric layered structures loaded with viscous liquid on the dispersive and attenuated characteristics of Love waves, which involves a thin piezoelectr...We investigate analytically the effect of initial stress in piezoelectric layered structures loaded with viscous liquid on the dispersive and attenuated characteristics of Love waves, which involves a thin piezoelectric layer bonded perfectly to an unbounded elastic substrate. The effects of initial stress in the piezoelectric layer and the viscous coefficient of the liquid on the phase velocity of Love waves are analyzed. Numerical results are presented and discussed. The analytical method and the results can be useful for the design of chemical and biosensing liquid sensors.展开更多
A three-layer structure model is proposed for investigating the effect of a soft elastic middle layer on the propagation behavior of Love waves in piezoelectric layered systems, with "soft" implying that the bulk-sh...A three-layer structure model is proposed for investigating the effect of a soft elastic middle layer on the propagation behavior of Love waves in piezoelectric layered systems, with "soft" implying that the bulk-shear-wave velocity of the middle layer is smaller than that of the upper sensitive layer. Dispersion equations are obtained for unelectroded and traction-free upper surfaces which, in the limit, can be reduced to those for classical Love waves. Systematic parametric studies are subsequently carried out to quantify the effects of the soft middle layer upon Love wave propagation, including its thickness, mass density, dielectric constant and elastic coefficient. It is demonstrated that whilst the thickness and elastic coefficient of the middle layer affect significantly Love wave propagation, its mass density and dielectric constant have negligible influence. On condition that both the thickness and elastic coefficient of the middle layer are vanishingly small so that it degenerates into an imperfectly bonded interface, the three-layer model is also employed to investigate the influence of imperfect interfaces on Love waves propagating in piezoelectric layer/elastic sub- strate systems. Upon comparing with the predictions ob- tained by employing the traditional shear-lag model, the present three-layer structure model is found to be more ac- curate as it avoids the unrealistic displacement discontinuity across imperfectly bonded interfaces assumed by the shearlag model, especially for long waves when the piezoelectric layer is relatively thin.展开更多
The paper studies the propagation of Love waves in a non-homogeneous substratum over an initially stressed heterogeneous half-space. The dispersion equation of phase velocity is derived. The velocities of Love waves a...The paper studies the propagation of Love waves in a non-homogeneous substratum over an initially stressed heterogeneous half-space. The dispersion equation of phase velocity is derived. The velocities of Love waves are calculated numerically as a function of kH and presented in a number of graphs, where k is the wave number, and H is the thickness of the layer. The case of Gibson's half-space is also considered. It is observed that the speed of Love waves is finite in the vicinity of the surface of the half-space and vanishes as the depth increases for a particular wave number. It is also observed that an increase in compressive initial stresses causes decreases of Love waves velocity for the same frequency, and the tensile initial stress of small magnitude in the half-space causes increase of the velocity.展开更多
Research on the propagation of elastic waves in piezoelectric nanostructures is very limited. The frequency dispersion of Love waves in layered piezoelectric nanostructures has not yet been reported when surface effec...Research on the propagation of elastic waves in piezoelectric nanostructures is very limited. The frequency dispersion of Love waves in layered piezoelectric nanostructures has not yet been reported when surface effects are taken into account. Based on the surface elasticity theory, the propagation of Love waves with surface effects in a structure consisting of a nanosized piezoelectric film and a semi-infinite elastic substrate is investigated focusing on the frequency dispersion curves of different modes. The results show that under the electrically-open conditions, surface effects give rise to the dependence of Love wave dispersion on the film thickness when the thickness of the piezoelectric film reduces to nanometers. For a given wave frequency, phase velocity of Love waves in all dispersion modes exhibit obvious toward shift as the film thickness decreases or the surface parameters increase. Moreover, there may exist a cut-off frequency in the first mode dispersion below which Love waves will be evanescent in the structure due to surface effects. The cut-off frequency depends on the film thickness, the surface parameters and the bulk material properties.展开更多
Theoretical analysis and numerical calculations of Love wave propagation in layered graded composites with imperfectly bonded interface are described in this paper. On the basis of WKB method, the approximate analytic...Theoretical analysis and numerical calculations of Love wave propagation in layered graded composites with imperfectly bonded interface are described in this paper. On the basis of WKB method, the approximate analytic solutions for Love waves are obtained. By the interface shear spring model, the dispersion relations for Love waves in layered graded composite structures with rigid, slip, and imperfectly bonded interfaces are given, and the effects of the interface conditions on the phase velocities of Love waves in SiC/Al layered graded composites are discussed. Numerical analysis shows that the phase velocity decreases when the defined flexibility parameter is greater. For the general imperfectly bonded interface, the phase velocity changes in the range of the velocities for the rigid and slip interface conditions.展开更多
The scattering of Love waves by an interface crack between apiezoelectric layers and an elas- tic substrate is investigated byusing the integral transform and singular integral equationtechniques. The dy- namic stress...The scattering of Love waves by an interface crack between apiezoelectric layers and an elas- tic substrate is investigated byusing the integral transform and singular integral equationtechniques. The dy- namic stress intensity factors of the left andthe right crack tips are determined. It is found from numericalcalculation that the dynamic response of the system dependssignificantly on the crack configuration, the ma- terial combinationand the propagating direction of the incident wave. It is expectedthat specifying an appro- priate material combination may retard thegrowth of the crack for a certain crack configuration.展开更多
In this paper,Love waves propagating in a piezoelectric semiconductor(PSC)layered structure are investigated,where a PSC thin film is perfectly bonded on an elastic dielectric half-space.The dispersion equations are d...In this paper,Love waves propagating in a piezoelectric semiconductor(PSC)layered structure are investigated,where a PSC thin film is perfectly bonded on an elastic dielectric half-space.The dispersion equations are derived analytically.The influence of semiconducting properties on the propagation characteristics is examined in detail.Numerical results show that the semiconducting effect reduces the propagation speed,and that the Love waves can propagate with a speed slightly higher than the shear wave speed of the elastic dielectric half-space.The wave speed and attenuation significantly depend on the steady-state carrier density and the thickness of the PSC thin film.It is also found that when the horizontal biasing electric field is larger than the critical value(corresponding to the zero attenuation),the wave amplitude is increased.These findings are useful for the analysis and design of various surface wave devices made of PSC.展开更多
Coal seams have a pronounced bedding structure with developed cracks and exhibit signifi cant anisotropy.However,few studies have examined the frequency dispersion properties of channel waves in anisotropic coal seams...Coal seams have a pronounced bedding structure with developed cracks and exhibit signifi cant anisotropy.However,few studies have examined the frequency dispersion properties of channel waves in anisotropic coal seams.In this study,numerical solutions are calculated using the generalized reflection–transmission coefficient method for the dispersion curves of Love channel waves in vertical transversely isotropic(VTI)and horizontal transversely isotropic(HTI)medium models.Moreover,the frequency dispersion characteristics of Love channel waves in several typical transversely isotropic models are analyzed.We fi nd that the dispersion curves for isotropic and VTI media diff er signifi cantly.In addition,the phase and Airy-phase velocities in VTI media are higher than those in isotropic media.Thus,neglecting this difference in practical channel wave detection will result in large detection errors.The dispersion curves for the isotropic and HTI media do not differ signifi cantly,and the Airy-phase velocities of various modes are similar.The group-velocity curve for a coal seam model containing a dirt band is found to be extremely irregular.The fundamental-mode Airy phase is not pronounced,but the fi rst-mode Airy phase can be clearly observed.Hence,fi rst-mode channel waves are suitable for detecting dirt bands.展开更多
We estimate Love wave empirical Green's functions from cross-correlations of ambient seismic noise to study the crust and uppermost mantle structure in Italy. Transverse-component ambient noise data from October 2005...We estimate Love wave empirical Green's functions from cross-correlations of ambient seismic noise to study the crust and uppermost mantle structure in Italy. Transverse-component ambient noise data from October 2005 through March 2007 recorded at 114 seismic stations from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) national broadband network, the Mediterranean Very Broadband Seismographic Network (MedNet) and the Austrian Central Institute for Meteorology and Geodynamics (ZAMG) yield more than 2 000 Love wave group velocity measurements using the multiple-filter analysis technique. In the short period band (5-20 s), the cross-correlations show clearly one-sided asymmetric feature due to non-tmiform noise distribution and high local activities, and in the long period band (〉20 s) this feature becomes weak owing to more diffusive noise distribution. Based on these measurements, Love wave group velocity dispersion maps in the 8-34 s period band are constructed, then the SH wave velocity structures from the Love wave dispersions are inverted. The final results obtained from Love wave data are overall in good agreement with those from Rayleigh waves. Both Love and Rayleigh wave inversions all reveal that the Po plain basin is resolved with low velocity at shallow depth, and the Tyrrhenian sea is characterized with higher velocity below 8 km due to its thin oceanic crust.展开更多
The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse colu...The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse column on the outside of working face has been a difficult problem. Based on this, numerical simulation and imaging research were carried out in this paper. The results indicate that when a seismic source near the roadway is excited, a part of seismic wave propagates along the roadway direction, namely direct P-wave, direct S-wave and direct Love channel wave.<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">When the body waves and Love channel wave propagating to the outside</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">of working face meet the interface of collapse column, the reflected Love channel wave and reflected body waves are generated.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Reflection </span><span style="font-family:Verdana;">body </span><span style="font-family:Verdana;">waves and direct waves are mixed in time domain, which is difficult to identify in seismic records, while reflected Love channel wave whose amplitude is relatively strong. The </span><span style="font-family:Verdana;">reflected </span><span style="font-family:Verdana;">Love channel wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">which</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">makes it suitable for advanced detection of collapse column. The signal-to-noise ratio of X component is higher than that of Y component and Z component. According to the seismic records, polarization filtering was carried out to enhance the effective wave, which removed the interference waves, and the signal was migrated to get the position parameters of collapse column interface, which was basically consistent with the model position.</span>展开更多
The paper presents the effect of a rigid boundary on the propagation of torsional surface waves in a porous elastic layer over a porous elastic half-space using the mechanics of the medium derived by Cowin and Nunzia...The paper presents the effect of a rigid boundary on the propagation of torsional surface waves in a porous elastic layer over a porous elastic half-space using the mechanics of the medium derived by Cowin and Nunziato (Cowin, S. C. and Nunziato, J. W. Linear elastic materials with voids. Journal of Elasticity, 13(2), 125-147 (1983)). The velocity equation is derived, and the results are discussed. It is observed that there may be two torsional surface wave fronts in the medium whereas three wave fronts of torsional surface waves in the absence of the rigid boundary plane given by Dey et al. (Dey, S., Gupta, S., Gupta, A. K., Kar, S. K., and De, P. K. Propagation of torsional surface waves in an elastic layer with void pores over an elastic half-space with void pores. Tamkang Journal of Science and Engineering, 6(4), 241-249 (2003)). The results also reveal that in the porous layer, the Love wave is also available along with the torsional surface waves. It is remarkable that the phase speed of the Love wave in a porous layer with a rigid surface is different from that in a porous layer with a free surface. The torsional waves are observed to be dispersive in nature, and the velocity decreases as the oscillation frequency increases.展开更多
The three-dimensional(3D) finite element(FE) simulation and analysis of Love wave sensors based on polyisobutylene(PIB) layers/SiO_(2)/ST-90°X quartz structure are presented in this paper, as well as the investig...The three-dimensional(3D) finite element(FE) simulation and analysis of Love wave sensors based on polyisobutylene(PIB) layers/SiO_(2)/ST-90°X quartz structure are presented in this paper, as well as the investigation of coupled resonance effect on the acoustic properties of the devices. The mass sensitivity of the basic Love wave device with SiO_(2)guiding layers is solved analytically. And the highest mass sensitivity of 128 m^(2)/kg is obtained as h_(s)/λ = 0.175. The sensitivity of the Love wave sensors for sensing volatile organic compounds(VOCs) is greatly improved due to the presence of coupled resonance induced by the PIB nanorods on the device surface. The frequency shifts of the sensor corresponding to CH_(2)Cl_(2),CHCl_(3), CCl_(4), C_(2)Cl_(4), CH_(3)Cl and C_(2)HCl_(3) with the concentration of 100 ppm are 1.431 kHz, 5.507 kHz, 13.437 kHz,85.948 kHz, 0.127 kHz and 17.879 kHz, respectively. The viscoelasticity influence of the sensitive material on the characteristics of SAW sensors is also studied. By taking account of the viscoelasticity of the PIB layers, the sensitivities of the SAW sensors with the PIB film and PIB nanorods decay in different degree. The gas sensing property of the Love wave sensor with PIB nanorods is superior to that of the PIB films. Meanwhile, the Love wave sensors with PIB sensitive layers show good selectivity to C_(2)Cl_(4), making it an ideal selection for gas sensing applications.展开更多
This paper is based on the surface wave seismogram of South Sandwich Island earthquake(Ms=6.4) recorded by Antarctic General Bernardo O'Higgins Station. We computed a group velocity dispersion of Love surface wave...This paper is based on the surface wave seismogram of South Sandwich Island earthquake(Ms=6.4) recorded by Antarctic General Bernardo O'Higgins Station. We computed a group velocity dispersion of Love surface wave and obtained lithosphere structure by using the method of the matchedfilter frequencytime analysis and grid dispersion inversion. Our result shows that crust structure below Antarctic Peninsula may be divided into three layers and their thickness are respectively 5 km,8 km and 10 km. Upper mantle velocity is 5.32 km/s and gradually changes into 5.11 4.9 km/s below 53 km.The mininum velocity is 4.8 km/s. It can be referred that Antarctic mantle is also of layered structure.展开更多
A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an S...A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90° X quartz substrate and two 28-μm periodic interdigital transducers. Both the calculated and the measured results show an increase in propagation velocity when h / λ〉0.05. The measured insertion loss of LWs is consistent with the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of LWs.展开更多
Microtremors array observation for estimating S-wave velocity structure from phase velocities of Rayleigh and Love wave on two practical sites in Tangshan area by a China-US joint group are researched.The phase veloci...Microtremors array observation for estimating S-wave velocity structure from phase velocities of Rayleigh and Love wave on two practical sites in Tangshan area by a China-US joint group are researched.The phase velocities of Rayleigh wave are estimated from vertical component records and those of Love wave are estimated from three-component records of microtremors array using modified spatial auto-correlation method.Haskell matrix method is used in calculating Rayleigh and Love wave phase velocities,and the shallow S-wave velocity structure of two practical sites are estimated by means of a hybrid approach of Genetic Algorithm and Simplex.The results are compared with the PS logging data of the two sites,showing it is feasible to estimate the shallow S-wave velocity structure of practical site from the observation of microtremor array.展开更多
We have derived a general formula for sensitivity optimization of gravimetric sensors and have used it to design a high sensitivity gravimetric sensor using unidirectional carbon fiber epoxy composite (CFEC) wavegui...We have derived a general formula for sensitivity optimization of gravimetric sensors and have used it to design a high sensitivity gravimetric sensor using unidirectional carbon fiber epoxy composite (CFEC) waveguide layer on (1 -x)Pb(Znl/3Nbz/3)O3-xPbTiO3 (PZN-xPT) single crystal substrate with the carbon fibers parallel to the xj and x2 axes, respectively. The normalized maximum sensitivity (|sfm|λ)max exhibits an increasing tendency with the decrease of (h/λ)opt and the maximum sensitivity (|sfm|λ)max increases with the elastic constant c6E6 of the piezoelectric substrate material. For the CFEC/[011]c poled PZN-7%PT single crystal sensor configuration, with the carbon fibers parallel to the xa axis at λ = 24 ktm, the maximum sensitivity |sfm|max can reach as high as 1156 cmZ/g, which is about three times that of a traditional SiO2/ST quartz structure gravimetric sensor. The better design selection is to have the carbon fibers parallel to the direction of propagation of Love wave in order to obtain the best sensitivity.展开更多
In this paper, a mathematical model for Love wave propagation in a porous elastic layer under a rigid boundary resting over a poro-elastic half-space has been developed. The study shows that such a medium transmits tw...In this paper, a mathematical model for Love wave propagation in a porous elastic layer under a rigid boundary resting over a poro-elastic half-space has been developed. The study shows that such a medium transmits two types of Love waves. The first front depends on the change in volume fraction of the pores whereas the second front depends upon the modulus of rigidity of the elastic matrix of the medium and is the same as the Love wave in an elastic layer over an elastic half-space. It is observed that the first front is many times faster than the shear wave in the medium with void pores due to the change in the volume fraction of the pores and is significant.展开更多
In many geophysical applications, neglecting of anisotropy is somehow an oversimplification. The mismatch between prediction based on isotropic theory and near-surface seismic observations indicates the need for the i...In many geophysical applications, neglecting of anisotropy is somehow an oversimplification. The mismatch between prediction based on isotropic theory and near-surface seismic observations indicates the need for the inclusion of medium anisotropy. In this paper, surface wave(Love wave) dispersion properties are used to estimate the anisotropic structure of the near-surface layered earth, which is modeled as media possess vertical transverse isotropy(VTI), a reasonable assumption for near-surface sedimentary layers. Our approach utilizes multi-mode surface waves to estimate both the velocity structure and the anisotropy structure. This approach consists of three parts. First, the dispersion analysis is used to extract dispersion curves from real data. Second, the forward modeling is carried out based on the dispersion equation of Love wave in a multi-layered VTI medium. Dispersion curves of multi-modes, which are the numerical solutions of the dispersion equation, are obtained by a graphic-based method. Finally, the very fast simulated annealing(VFSA) algorithm is used to invert velocity structure and anisotropy structure simultaneously. Our approach is verified by the synthetic dispersion curve generated by a VTI medium model. The estimation of shear wave velocity and anisotropy structure of surface wave data acquired at Rentschler Field, an urban center site on sediments in the Connecticut River valley reveals a simple structure of the sediment layer over a bedrock half space. The results are verified by other inversion results based on different data set obtained on the same site. The consistency of inversion results shows the feasibility and efficiency of the approach.展开更多
This paper aimed at extracting optimal structural parameters for Love wave device with structure of multi-waveguides to improve its temperature stability. The theoretical model dealing with the Love wave propagation i...This paper aimed at extracting optimal structural parameters for Love wave device with structure of multi-waveguides to improve its temperature stability. The theoretical model dealing with the Love wave propagation in multi-waveguides was established first, the dispersion characteristic is depicted by the acoustic propagation theory of stratified media and boundary conditions. Combing with the dispersion characteristics and Tomar's method, the optimal structural parameters for the Love wave device with zero temperature coefficient were extracted, and confirmed by the following experimental results. Excellent temperature coefficient of the Love wave device with SU-8/SiO2 on ST-90°X quartz substrate was evaluated experimentally as only 2.16 ppm/℃, which agrees well with the calculated results. The optimized Love wave device is very promising in gas sensing application.展开更多
基金supported by the National Natural Science Foundation of China(No.10772087)K.C.Wong Education Foundation, Hong Kong and K.C.Wong Magna Fund in Ningbo University.
文摘We investigate analytically the effect of initial stress in piezoelectric layered structures loaded with viscous liquid on the dispersive and attenuated characteristics of Love waves, which involves a thin piezoelectric layer bonded perfectly to an unbounded elastic substrate. The effects of initial stress in the piezoelectric layer and the viscous coefficient of the liquid on the phase velocity of Love waves are analyzed. Numerical results are presented and discussed. The analytical method and the results can be useful for the design of chemical and biosensing liquid sensors.
基金supported by the National Natural Science Foundation of China(10972171)the Program for New Century Excellent Talents in Universities(NCET-08-0429)the National 111 Project(B06024)
文摘A three-layer structure model is proposed for investigating the effect of a soft elastic middle layer on the propagation behavior of Love waves in piezoelectric layered systems, with "soft" implying that the bulk-shear-wave velocity of the middle layer is smaller than that of the upper sensitive layer. Dispersion equations are obtained for unelectroded and traction-free upper surfaces which, in the limit, can be reduced to those for classical Love waves. Systematic parametric studies are subsequently carried out to quantify the effects of the soft middle layer upon Love wave propagation, including its thickness, mass density, dielectric constant and elastic coefficient. It is demonstrated that whilst the thickness and elastic coefficient of the middle layer affect significantly Love wave propagation, its mass density and dielectric constant have negligible influence. On condition that both the thickness and elastic coefficient of the middle layer are vanishingly small so that it degenerates into an imperfectly bonded interface, the three-layer model is also employed to investigate the influence of imperfect interfaces on Love waves propagating in piezoelectric layer/elastic sub- strate systems. Upon comparing with the predictions ob- tained by employing the traditional shear-lag model, the present three-layer structure model is found to be more ac- curate as it avoids the unrealistic displacement discontinuity across imperfectly bonded interfaces assumed by the shearlag model, especially for long waves when the piezoelectric layer is relatively thin.
文摘The paper studies the propagation of Love waves in a non-homogeneous substratum over an initially stressed heterogeneous half-space. The dispersion equation of phase velocity is derived. The velocities of Love waves are calculated numerically as a function of kH and presented in a number of graphs, where k is the wave number, and H is the thickness of the layer. The case of Gibson's half-space is also considered. It is observed that the speed of Love waves is finite in the vicinity of the surface of the half-space and vanishes as the depth increases for a particular wave number. It is also observed that an increase in compressive initial stresses causes decreases of Love waves velocity for the same frequency, and the tensile initial stress of small magnitude in the half-space causes increase of the velocity.
基金Supported by National Natural Science Foundation of China(Grant No.11372261)Excellent Young Scientists Supporting Project of Science and Technology Department of Sichuan Province,China(Grant No.2013JQ0030)+4 种基金Supporting Project of Department of Education of Sichuan Province,China(Grant No.2014zd3132)Opening Project of Key Laboratory of Testing Technology for Manufacturing ProcessSouthwest University of Science and Technology-Ministry of Education,China(Grant No.12zxzk02)Fund of Doctoral Research of Southwest University of Science and Technology,China(Grant No.12zx7106)Postgraduate Innovation Fund of Southwest University of Science and Technology,China(Grant No.15ycx128)
文摘Research on the propagation of elastic waves in piezoelectric nanostructures is very limited. The frequency dispersion of Love waves in layered piezoelectric nanostructures has not yet been reported when surface effects are taken into account. Based on the surface elasticity theory, the propagation of Love waves with surface effects in a structure consisting of a nanosized piezoelectric film and a semi-infinite elastic substrate is investigated focusing on the frequency dispersion curves of different modes. The results show that under the electrically-open conditions, surface effects give rise to the dependence of Love wave dispersion on the film thickness when the thickness of the piezoelectric film reduces to nanometers. For a given wave frequency, phase velocity of Love waves in all dispersion modes exhibit obvious toward shift as the film thickness decreases or the surface parameters increase. Moreover, there may exist a cut-off frequency in the first mode dispersion below which Love waves will be evanescent in the structure due to surface effects. The cut-off frequency depends on the film thickness, the surface parameters and the bulk material properties.
基金Engineering Research Institute of Peking University (ERIPKU) Joint Building Project of Beijing Education Committee
文摘Theoretical analysis and numerical calculations of Love wave propagation in layered graded composites with imperfectly bonded interface are described in this paper. On the basis of WKB method, the approximate analytic solutions for Love waves are obtained. By the interface shear spring model, the dispersion relations for Love waves in layered graded composite structures with rigid, slip, and imperfectly bonded interfaces are given, and the effects of the interface conditions on the phase velocities of Love waves in SiC/Al layered graded composites are discussed. Numerical analysis shows that the phase velocity decreases when the defined flexibility parameter is greater. For the general imperfectly bonded interface, the phase velocity changes in the range of the velocities for the rigid and slip interface conditions.
基金the National Natural Science Foundation of China (No.19891180)the Fundamental Research Foundation of Tsinghua University (JZ 2000.007)the Fund of the Education Ministry of China.
文摘The scattering of Love waves by an interface crack between apiezoelectric layers and an elas- tic substrate is investigated byusing the integral transform and singular integral equationtechniques. The dy- namic stress intensity factors of the left andthe right crack tips are determined. It is found from numericalcalculation that the dynamic response of the system dependssignificantly on the crack configuration, the ma- terial combinationand the propagating direction of the incident wave. It is expectedthat specifying an appro- priate material combination may retard thegrowth of the crack for a certain crack configuration.
基金supported by the National Natural Science Foundation of China(No.U21A20430)the Youth Fund Project of Hebei Education Department of China(No.QN2022040)the Hebei Provincial Department of Human Resources and Social Security of China(No.C20220324).
文摘In this paper,Love waves propagating in a piezoelectric semiconductor(PSC)layered structure are investigated,where a PSC thin film is perfectly bonded on an elastic dielectric half-space.The dispersion equations are derived analytically.The influence of semiconducting properties on the propagation characteristics is examined in detail.Numerical results show that the semiconducting effect reduces the propagation speed,and that the Love waves can propagate with a speed slightly higher than the shear wave speed of the elastic dielectric half-space.The wave speed and attenuation significantly depend on the steady-state carrier density and the thickness of the PSC thin film.It is also found that when the horizontal biasing electric field is larger than the critical value(corresponding to the zero attenuation),the wave amplitude is increased.These findings are useful for the analysis and design of various surface wave devices made of PSC.
基金supported by the National Key R&D Program of China (No. 2018YFC0807804-3)Key R&D Program of Anhui Province (No. 1804a0802213)Scientifi c Research Foundation for the introduction talent of Anhui University of Science and Technology。
文摘Coal seams have a pronounced bedding structure with developed cracks and exhibit signifi cant anisotropy.However,few studies have examined the frequency dispersion properties of channel waves in anisotropic coal seams.In this study,numerical solutions are calculated using the generalized reflection–transmission coefficient method for the dispersion curves of Love channel waves in vertical transversely isotropic(VTI)and horizontal transversely isotropic(HTI)medium models.Moreover,the frequency dispersion characteristics of Love channel waves in several typical transversely isotropic models are analyzed.We fi nd that the dispersion curves for isotropic and VTI media diff er signifi cantly.In addition,the phase and Airy-phase velocities in VTI media are higher than those in isotropic media.Thus,neglecting this difference in practical channel wave detection will result in large detection errors.The dispersion curves for the isotropic and HTI media do not differ signifi cantly,and the Airy-phase velocities of various modes are similar.The group-velocity curve for a coal seam model containing a dirt band is found to be extremely irregular.The fundamental-mode Airy phase is not pronounced,but the fi rst-mode Airy phase can be clearly observed.Hence,fi rst-mode channel waves are suitable for detecting dirt bands.
基金supported in part by the 2004-2006 National Civil Defense Project of Italy (DPC)-S4, 2007-2009 DPC-S3the Fundamental Research Funds for the Central Universities of China under grant No. 2010ZD06
文摘We estimate Love wave empirical Green's functions from cross-correlations of ambient seismic noise to study the crust and uppermost mantle structure in Italy. Transverse-component ambient noise data from October 2005 through March 2007 recorded at 114 seismic stations from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) national broadband network, the Mediterranean Very Broadband Seismographic Network (MedNet) and the Austrian Central Institute for Meteorology and Geodynamics (ZAMG) yield more than 2 000 Love wave group velocity measurements using the multiple-filter analysis technique. In the short period band (5-20 s), the cross-correlations show clearly one-sided asymmetric feature due to non-tmiform noise distribution and high local activities, and in the long period band (〉20 s) this feature becomes weak owing to more diffusive noise distribution. Based on these measurements, Love wave group velocity dispersion maps in the 8-34 s period band are constructed, then the SH wave velocity structures from the Love wave dispersions are inverted. The final results obtained from Love wave data are overall in good agreement with those from Rayleigh waves. Both Love and Rayleigh wave inversions all reveal that the Po plain basin is resolved with low velocity at shallow depth, and the Tyrrhenian sea is characterized with higher velocity below 8 km due to its thin oceanic crust.
文摘The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse column on the outside of working face has been a difficult problem. Based on this, numerical simulation and imaging research were carried out in this paper. The results indicate that when a seismic source near the roadway is excited, a part of seismic wave propagates along the roadway direction, namely direct P-wave, direct S-wave and direct Love channel wave.<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">When the body waves and Love channel wave propagating to the outside</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">of working face meet the interface of collapse column, the reflected Love channel wave and reflected body waves are generated.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Reflection </span><span style="font-family:Verdana;">body </span><span style="font-family:Verdana;">waves and direct waves are mixed in time domain, which is difficult to identify in seismic records, while reflected Love channel wave whose amplitude is relatively strong. The </span><span style="font-family:Verdana;">reflected </span><span style="font-family:Verdana;">Love channel wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">which</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">makes it suitable for advanced detection of collapse column. The signal-to-noise ratio of X component is higher than that of Y component and Z component. According to the seismic records, polarization filtering was carried out to enhance the effective wave, which removed the interference waves, and the signal was migrated to get the position parameters of collapse column interface, which was basically consistent with the model position.</span>
基金supported by the Department of Science and Technology of New Delhi of India(No. SR/S4/ES-246/2006)
文摘The paper presents the effect of a rigid boundary on the propagation of torsional surface waves in a porous elastic layer over a porous elastic half-space using the mechanics of the medium derived by Cowin and Nunziato (Cowin, S. C. and Nunziato, J. W. Linear elastic materials with voids. Journal of Elasticity, 13(2), 125-147 (1983)). The velocity equation is derived, and the results are discussed. It is observed that there may be two torsional surface wave fronts in the medium whereas three wave fronts of torsional surface waves in the absence of the rigid boundary plane given by Dey et al. (Dey, S., Gupta, S., Gupta, A. K., Kar, S. K., and De, P. K. Propagation of torsional surface waves in an elastic layer with void pores over an elastic half-space with void pores. Tamkang Journal of Science and Engineering, 6(4), 241-249 (2003)). The results also reveal that in the porous layer, the Love wave is also available along with the torsional surface waves. It is remarkable that the phase speed of the Love wave in a porous layer with a rigid surface is different from that in a porous layer with a free surface. The torsional waves are observed to be dispersive in nature, and the velocity decreases as the oscillation frequency increases.
基金Project supported by the Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY213018)。
文摘The three-dimensional(3D) finite element(FE) simulation and analysis of Love wave sensors based on polyisobutylene(PIB) layers/SiO_(2)/ST-90°X quartz structure are presented in this paper, as well as the investigation of coupled resonance effect on the acoustic properties of the devices. The mass sensitivity of the basic Love wave device with SiO_(2)guiding layers is solved analytically. And the highest mass sensitivity of 128 m^(2)/kg is obtained as h_(s)/λ = 0.175. The sensitivity of the Love wave sensors for sensing volatile organic compounds(VOCs) is greatly improved due to the presence of coupled resonance induced by the PIB nanorods on the device surface. The frequency shifts of the sensor corresponding to CH_(2)Cl_(2),CHCl_(3), CCl_(4), C_(2)Cl_(4), CH_(3)Cl and C_(2)HCl_(3) with the concentration of 100 ppm are 1.431 kHz, 5.507 kHz, 13.437 kHz,85.948 kHz, 0.127 kHz and 17.879 kHz, respectively. The viscoelasticity influence of the sensitive material on the characteristics of SAW sensors is also studied. By taking account of the viscoelasticity of the PIB layers, the sensitivities of the SAW sensors with the PIB film and PIB nanorods decay in different degree. The gas sensing property of the Love wave sensor with PIB nanorods is superior to that of the PIB films. Meanwhile, the Love wave sensors with PIB sensitive layers show good selectivity to C_(2)Cl_(4), making it an ideal selection for gas sensing applications.
文摘This paper is based on the surface wave seismogram of South Sandwich Island earthquake(Ms=6.4) recorded by Antarctic General Bernardo O'Higgins Station. We computed a group velocity dispersion of Love surface wave and obtained lithosphere structure by using the method of the matchedfilter frequencytime analysis and grid dispersion inversion. Our result shows that crust structure below Antarctic Peninsula may be divided into three layers and their thickness are respectively 5 km,8 km and 10 km. Upper mantle velocity is 5.32 km/s and gradually changes into 5.11 4.9 km/s below 53 km.The mininum velocity is 4.8 km/s. It can be referred that Antarctic mantle is also of layered structure.
基金Supported by the National Natural Science Foundation of China under Grant No 11104314
文摘A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90° X quartz substrate and two 28-μm periodic interdigital transducers. Both the calculated and the measured results show an increase in propagation velocity when h / λ〉0.05. The measured insertion loss of LWs is consistent with the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of LWs.
基金Supported by National Natural Science Foundation of China(No.50378032and No.50538030)Associated Foundation of Earthquake Science(No.201009)Foundation of Heilongjiang Institute of Science and Technology(No.04-15).
文摘Microtremors array observation for estimating S-wave velocity structure from phase velocities of Rayleigh and Love wave on two practical sites in Tangshan area by a China-US joint group are researched.The phase velocities of Rayleigh wave are estimated from vertical component records and those of Love wave are estimated from three-component records of microtremors array using modified spatial auto-correlation method.Haskell matrix method is used in calculating Rayleigh and Love wave phase velocities,and the shallow S-wave velocity structure of two practical sites are estimated by means of a hybrid approach of Genetic Algorithm and Simplex.The results are compared with the PS logging data of the two sites,showing it is feasible to estimate the shallow S-wave velocity structure of practical site from the observation of microtremor array.
基金supported by the National Basic Research Program of China(Grant No.2013CB632900)
文摘We have derived a general formula for sensitivity optimization of gravimetric sensors and have used it to design a high sensitivity gravimetric sensor using unidirectional carbon fiber epoxy composite (CFEC) waveguide layer on (1 -x)Pb(Znl/3Nbz/3)O3-xPbTiO3 (PZN-xPT) single crystal substrate with the carbon fibers parallel to the xj and x2 axes, respectively. The normalized maximum sensitivity (|sfm|λ)max exhibits an increasing tendency with the decrease of (h/λ)opt and the maximum sensitivity (|sfm|λ)max increases with the elastic constant c6E6 of the piezoelectric substrate material. For the CFEC/[011]c poled PZN-7%PT single crystal sensor configuration, with the carbon fibers parallel to the xa axis at λ = 24 ktm, the maximum sensitivity |sfm|max can reach as high as 1156 cmZ/g, which is about three times that of a traditional SiO2/ST quartz structure gravimetric sensor. The better design selection is to have the carbon fibers parallel to the direction of propagation of Love wave in order to obtain the best sensitivity.
文摘In this paper, a mathematical model for Love wave propagation in a porous elastic layer under a rigid boundary resting over a poro-elastic half-space has been developed. The study shows that such a medium transmits two types of Love waves. The first front depends on the change in volume fraction of the pores whereas the second front depends upon the modulus of rigidity of the elastic matrix of the medium and is the same as the Love wave in an elastic layer over an elastic half-space. It is observed that the first front is many times faster than the shear wave in the medium with void pores due to the change in the volume fraction of the pores and is significant.
基金supported by the U.S. Geological Survey through a research collaboration program with University of Connecticut via its branch of geophysics, office of groundwater
文摘In many geophysical applications, neglecting of anisotropy is somehow an oversimplification. The mismatch between prediction based on isotropic theory and near-surface seismic observations indicates the need for the inclusion of medium anisotropy. In this paper, surface wave(Love wave) dispersion properties are used to estimate the anisotropic structure of the near-surface layered earth, which is modeled as media possess vertical transverse isotropy(VTI), a reasonable assumption for near-surface sedimentary layers. Our approach utilizes multi-mode surface waves to estimate both the velocity structure and the anisotropy structure. This approach consists of three parts. First, the dispersion analysis is used to extract dispersion curves from real data. Second, the forward modeling is carried out based on the dispersion equation of Love wave in a multi-layered VTI medium. Dispersion curves of multi-modes, which are the numerical solutions of the dispersion equation, are obtained by a graphic-based method. Finally, the very fast simulated annealing(VFSA) algorithm is used to invert velocity structure and anisotropy structure simultaneously. Our approach is verified by the synthetic dispersion curve generated by a VTI medium model. The estimation of shear wave velocity and anisotropy structure of surface wave data acquired at Rentschler Field, an urban center site on sediments in the Connecticut River valley reveals a simple structure of the sediment layer over a bedrock half space. The results are verified by other inversion results based on different data set obtained on the same site. The consistency of inversion results shows the feasibility and efficiency of the approach.
基金supported by the National Nature Science Foundation of China(11074268,10834010)
文摘This paper aimed at extracting optimal structural parameters for Love wave device with structure of multi-waveguides to improve its temperature stability. The theoretical model dealing with the Love wave propagation in multi-waveguides was established first, the dispersion characteristic is depicted by the acoustic propagation theory of stratified media and boundary conditions. Combing with the dispersion characteristics and Tomar's method, the optimal structural parameters for the Love wave device with zero temperature coefficient were extracted, and confirmed by the following experimental results. Excellent temperature coefficient of the Love wave device with SU-8/SiO2 on ST-90°X quartz substrate was evaluated experimentally as only 2.16 ppm/℃, which agrees well with the calculated results. The optimized Love wave device is very promising in gas sensing application.