The bioleaching of a low grade Ni Cu sulfide ore from Jinchuan Mine with Thiobacillus ferrooxidans (TF5) and Thiobacillus thiooxidans (TT) was investigated. The effect of pH, the initial cell numbers of bacteria, the ...The bioleaching of a low grade Ni Cu sulfide ore from Jinchuan Mine with Thiobacillus ferrooxidans (TF5) and Thiobacillus thiooxidans (TT) was investigated. The effect of pH, the initial cell numbers of bacteria, the pulp density and the ratio of TF5 and TT on leaching was described, and the favorable bioleaching conditions for the ore were experimentally confirmed. The aeration leaching, agitation leaching with air bubbling, and column leaching were respectively tested. The highest recovery was achieved in the aeration leaching. After leaching for 20?d with pulp density of 15%, the extractions of Ni, Cu and Co were respectively 95.4%, 48.6% and 82.6%.展开更多
Effects of residues produced by agricultural wastes fermentation(AWF)on low grade copper sulfide ores bioleaching,copper recovery,and microbial community were investigated.The results indicated that adding appropriate...Effects of residues produced by agricultural wastes fermentation(AWF)on low grade copper sulfide ores bioleaching,copper recovery,and microbial community were investigated.The results indicated that adding appropriate bulk of AWF made contributions to low grade copper sulfide ores bioleaching,which may be mainly realized through reducing the passivation layer formed by Fe3+hydrolysis.Improved copper recovery(78.35%)and bacteria concentration(9.56×10^(7)cells·mL^(−1))were yielded in the presence of 5 g·L^(−1)AWF.The result of 16S rDNA analysis demonstrated that microbial community was differentiated by adding AWF.Bacteria proportion,such as Acidithiobacillus ferrooxidans,Moraxella osloensis,and Lactobacillus acetotolerans changed distinctly.Great difference between samples was showed according to beta diversity index,and the maximum value reached 0.375.Acidithiobacillus ferrooxidans accounted for the highest proportion throughout the bioleaching process,and that of sample in the presence of 5 g·L^(−) AWF reached 28.63%.The results should show reference to application of agricultural wastes and low grade copper sulfide ores.展开更多
The Kalatongke Cu-Ni sulfide deposits located in the East Junggar terrane, northern Xinjiang, western China are the largest magmatic sulfide deposits in the Central Asian Orogenic Belt (CAOB). The chemical and carbo...The Kalatongke Cu-Ni sulfide deposits located in the East Junggar terrane, northern Xinjiang, western China are the largest magmatic sulfide deposits in the Central Asian Orogenic Belt (CAOB). The chemical and carbon isotopic compositions of the volatiles trapped in olivine, pyroxene and sulfide mineral separates were analyzed by vacuum stepwise-heating mass spectrometry. The results show that the released volatiles are concentrated at three temperature intervals of 200-400°C, 400-900°C and 900-1200°C. The released volatiles from silicate mineral separates at 400-900°C and 900-1200°C have similar chemical and carbon isotopic compositions, which are mainly composed of H2O (av. ~92 mol%) with minor H2, CO2, H2S and SO2, and they are likely associated with the ore-forming magmatic volatiles. Light δ13CCO2 values (from -20.86‰ to -12.85‰) of pyroxene indicate crustal contamination occurred prior to or synchronous with pyroxene crystallization of mantlederived ore-forming magma. The elevated contents of H2 and H2O in the olivine and pyroxene suggest a deep mantle-originated ore-forming volatile mixed with aqueous volatiles from recycled subducted slab. High contents of CO2 in the ore-forming magma volatiles led to an increase in oxygen fugacity, and thereby reduced the solubility of sulfur in the magma, then triggered sulfur saturation followed by sulfide melt segregation; CO2 contents correlated with Cu contents in the whole rocks suggest that a supercritical state of CO2 in the ore-forming magma system under high temperature and pressure conditions might play a key role in the assemblage of huge Cu and Ni elements. The volatiles released from constituent minerals of intrusion 1# have more CO2 and SO2 oxidized gases, higher CO2/CH4 and SO2/H2S ratios and lighter δ13CCO2 than those of intrusions 2# and 3#. This combination suggests that the higher oxidation state of the volatiles in intrusion 1# than intrusions 2# and 3#, which could be one of key ore-forming factors for large amounts of ores and high contents of Cu and Ni in intrusion 1#. The volatiles released at 200-400°C are dominated by H2O with minor CO2, N2+CO and SO2, with δ13CCO2 values (-25.66‰ to -22.98‰) within the crustal ranges, and are considered to be related to secondary tectonic-hydrothermal activities.展开更多
文摘The bioleaching of a low grade Ni Cu sulfide ore from Jinchuan Mine with Thiobacillus ferrooxidans (TF5) and Thiobacillus thiooxidans (TT) was investigated. The effect of pH, the initial cell numbers of bacteria, the pulp density and the ratio of TF5 and TT on leaching was described, and the favorable bioleaching conditions for the ore were experimentally confirmed. The aeration leaching, agitation leaching with air bubbling, and column leaching were respectively tested. The highest recovery was achieved in the aeration leaching. After leaching for 20?d with pulp density of 15%, the extractions of Ni, Cu and Co were respectively 95.4%, 48.6% and 82.6%.
基金financially supported by the Key Program of National Natural Science Foundation of China (Nos. 52034001 and 51734001)the Innovation Team in Key Fields of Ministry of Science and Technology of the People’s Republic of China (No. 2018RA400)+2 种基金the 111 Project (No. B20041)the Fundamental Research Funds for the Central Universities (No. FRF-TP-18-003C1)China Scholarship Council (No. 202006460037)
文摘Effects of residues produced by agricultural wastes fermentation(AWF)on low grade copper sulfide ores bioleaching,copper recovery,and microbial community were investigated.The results indicated that adding appropriate bulk of AWF made contributions to low grade copper sulfide ores bioleaching,which may be mainly realized through reducing the passivation layer formed by Fe3+hydrolysis.Improved copper recovery(78.35%)and bacteria concentration(9.56×10^(7)cells·mL^(−1))were yielded in the presence of 5 g·L^(−1)AWF.The result of 16S rDNA analysis demonstrated that microbial community was differentiated by adding AWF.Bacteria proportion,such as Acidithiobacillus ferrooxidans,Moraxella osloensis,and Lactobacillus acetotolerans changed distinctly.Great difference between samples was showed according to beta diversity index,and the maximum value reached 0.375.Acidithiobacillus ferrooxidans accounted for the highest proportion throughout the bioleaching process,and that of sample in the presence of 5 g·L^(−) AWF reached 28.63%.The results should show reference to application of agricultural wastes and low grade copper sulfide ores.
基金financially supported by NSF of China(Grant 41072056, 40772058, 91014003, 40534020 and40772062)Key Projects of China Geological Survey(1212011121092)MOE (311010)
文摘The Kalatongke Cu-Ni sulfide deposits located in the East Junggar terrane, northern Xinjiang, western China are the largest magmatic sulfide deposits in the Central Asian Orogenic Belt (CAOB). The chemical and carbon isotopic compositions of the volatiles trapped in olivine, pyroxene and sulfide mineral separates were analyzed by vacuum stepwise-heating mass spectrometry. The results show that the released volatiles are concentrated at three temperature intervals of 200-400°C, 400-900°C and 900-1200°C. The released volatiles from silicate mineral separates at 400-900°C and 900-1200°C have similar chemical and carbon isotopic compositions, which are mainly composed of H2O (av. ~92 mol%) with minor H2, CO2, H2S and SO2, and they are likely associated with the ore-forming magmatic volatiles. Light δ13CCO2 values (from -20.86‰ to -12.85‰) of pyroxene indicate crustal contamination occurred prior to or synchronous with pyroxene crystallization of mantlederived ore-forming magma. The elevated contents of H2 and H2O in the olivine and pyroxene suggest a deep mantle-originated ore-forming volatile mixed with aqueous volatiles from recycled subducted slab. High contents of CO2 in the ore-forming magma volatiles led to an increase in oxygen fugacity, and thereby reduced the solubility of sulfur in the magma, then triggered sulfur saturation followed by sulfide melt segregation; CO2 contents correlated with Cu contents in the whole rocks suggest that a supercritical state of CO2 in the ore-forming magma system under high temperature and pressure conditions might play a key role in the assemblage of huge Cu and Ni elements. The volatiles released from constituent minerals of intrusion 1# have more CO2 and SO2 oxidized gases, higher CO2/CH4 and SO2/H2S ratios and lighter δ13CCO2 than those of intrusions 2# and 3#. This combination suggests that the higher oxidation state of the volatiles in intrusion 1# than intrusions 2# and 3#, which could be one of key ore-forming factors for large amounts of ores and high contents of Cu and Ni in intrusion 1#. The volatiles released at 200-400°C are dominated by H2O with minor CO2, N2+CO and SO2, with δ13CCO2 values (-25.66‰ to -22.98‰) within the crustal ranges, and are considered to be related to secondary tectonic-hydrothermal activities.