To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the Pr...To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the fi lling of the molten metal is not stable; and the casting does not follow the sequence solidifi cation, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the fi lling time is prolonged from 4.0 s to 4.5 s, the fi lling of molten metal becomes stable, but this casting does not follow the sequence solidifi cation either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.展开更多
基于FEM(Finite Element Methods)开发的理论模拟对研究铝合金材料铸造成形有重要意义。采用理论模拟研究ZL205A铝合金筒体铸件低压铸造、重力铸造工艺,根据对应工艺获得铸件的实际质量,确定适合产品的理想工艺。研究结果表明,采用浇注...基于FEM(Finite Element Methods)开发的理论模拟对研究铝合金材料铸造成形有重要意义。采用理论模拟研究ZL205A铝合金筒体铸件低压铸造、重力铸造工艺,根据对应工艺获得铸件的实际质量,确定适合产品的理想工艺。研究结果表明,采用浇注系统截面比1:4:5开放式重力浇注工艺,产品外观荧光检查、内部X光探伤检查均满足产品技术需求,且工艺出品率达到55%以上。展开更多
基金supported by the National Natural Science Foundation of China(No.51204124)the China Postdoctoral Science Foundation(No.2012M511610)the Scientific Research Foundation of Wuhan Institute of Technology(No.14125041)
文摘To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the fi lling of the molten metal is not stable; and the casting does not follow the sequence solidifi cation, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the fi lling time is prolonged from 4.0 s to 4.5 s, the fi lling of molten metal becomes stable, but this casting does not follow the sequence solidifi cation either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.
文摘基于FEM(Finite Element Methods)开发的理论模拟对研究铝合金材料铸造成形有重要意义。采用理论模拟研究ZL205A铝合金筒体铸件低压铸造、重力铸造工艺,根据对应工艺获得铸件的实际质量,确定适合产品的理想工艺。研究结果表明,采用浇注系统截面比1:4:5开放式重力浇注工艺,产品外观荧光检查、内部X光探伤检查均满足产品技术需求,且工艺出品率达到55%以上。