Aiming at the contradiction between the depth control accuracy and the energy consumption of the self-sustaining intelligent buoy,a low energy consumption depth control method based on historical array for real-time g...Aiming at the contradiction between the depth control accuracy and the energy consumption of the self-sustaining intelligent buoy,a low energy consumption depth control method based on historical array for real-time geostrophic oceanography(Argo)data is proposed.As known from the buoy kinematic model,the volume of the external oil sac only depends on the density and temperature of seawater at hovering depth.Hence,we use historical Argo data to extract the fitting curves of density and temperature,and obtain the relationship between the hovering depth and the volume of the external oil sac.Genetic algorithm is used to carry out the optimal energy consumption motion planning for the depth control process,and the specific motion strategy of depth control process is obtained.Compared with dual closed-loop fuzzy PID control method and radial basis function(RBF)-PID method,the proposed method reduces energy consumption to 1/50 with the same accuracy.Finally,a hardware-in-the-loop simulation system was used to verify this method.When the error caused by fitting curves is not considered,the average error is 2.62 m,the energy consumption is 3.214×10^(4)J,and the error of energy consumption is only 0.65%.It shows the effectiveness and reliability of the method as well as the advantages of comprehensively considering the accuracy and energy consumption.展开更多
With the development of industrialization,the emission of volatile organic compounds(VOCs)to atmosphere causes serious environmental problems and the treatment of VOCs needs to consume a lot of energy.Moreover,indoor ...With the development of industrialization,the emission of volatile organic compounds(VOCs)to atmosphere causes serious environmental problems and the treatment of VOCs needs to consume a lot of energy.Moreover,indoor VOCs are seriously harmful to human health.Thus,there is an urgent requirement for the development of indoor VOCs treatment technologies.Catalytic degradation of VOCs,as a low energy consumption,high efficiency,and easy to achieve manner,has been widely studied in related fields.As a kind of transition metal catalyst,manganese-based catalysts have attracted a lot of attention in the catalytic degradation of VOCs because of their unique advantages including high efficiency,low cost,and excellent stability.This paper reviews the state-of-the-art progress of manganese-based catalysts for VOCs catalytic degradation.We introduce the thermocatalytic,photocatalytic and photo-thermocatalytic degradation of VOCs on manganese-based catalysts in this paper.The optimization of manganese-based catalysts by means of structural design,decorating modification and defect engineering is discussed.展开更多
Electrocatalytic hydrogen evolution and sulfion(S^(2-))recycling are promising strategies for boosting H_(2)production and removing environmental pollutants.Here,a nano-Ni-functionalized molybdenum disulfide(MoS_(2))n...Electrocatalytic hydrogen evolution and sulfion(S^(2-))recycling are promising strategies for boosting H_(2)production and removing environmental pollutants.Here,a nano-Ni-functionalized molybdenum disulfide(MoS_(2))nanosheet was assembled on steel mesh(Ni-MoS_(2)/SM)for use in sulfide oxidation reaction-assisted,energy-saving H_(2)production.Experimental and theoretical calculation results revealed that anchoring nano-Ni on high-surface-area slack MoS_(2)nanosheets not only optimized catalyst adsorption of polysulfides but also played an important role in promoting hydrogen evolution reaction kinetics by absorbing OH_(ad),thereby greatly enhancing the catalytic performance toward sulfide oxidation reaction and hydrogen evolution reaction.Meanwhile,the Ni/MoS^(2-)based hydrogen evolution reaction+sulfide oxidation reaction system achieved nearly 100%hydrogen production efficiency and only consumed 61%less power per kWh than the oxygen evolution reaction+hydrogen evolution reaction system,which suggested our proposed Ni-MoS_(2)and novel hydrogen production system are promising for sustainable energy production.展开更多
The PRT (Personal Rapid Transit) refers to a traffic system in which small vehicles automatically travel on a dedicated rail network or road network.It is a branch of monorail traffic and dedicated road traffic.It can...The PRT (Personal Rapid Transit) refers to a traffic system in which small vehicles automatically travel on a dedicated rail network or road network.It is a branch of monorail traffic and dedicated road traffic.It can change the situation of high energy consumption of traditional mountain transportation.It can reduce the amount of machinery used in the construction process to reduce carbon emissions.It is completely powered by electricity and reduces the friction of the cableway to reduce energy consumption.Its construction process uses small amount of traditional building materials such as concrete and steel.It has little damage to the ecological environment of the mountain,and can not damage the carbon sequestration ability of the plant community.It could serve as a means of transporting goods over long distance,reducing the need for big trucks and thus reducing the consumption of fossil fuels.展开更多
This research aims to generate processes of industrialization and qualification of social housing in Colombia through prefabrication,low energy consumption and high environmental quality to reduce the current deficit ...This research aims to generate processes of industrialization and qualification of social housing in Colombia through prefabrication,low energy consumption and high environmental quality to reduce the current deficit and improve the quality of life in communities with fewer economic resources.Modular coordination and the use of materials with thermal behaviors,appropriate to the country’s climatic characteristics,reduce production costs,avoid waste and improve the architectural and environmental quality of social housing.Passive cooling strategies,such as controlling solar incursion and generating natural cross ventilation eliminate energy consumption and allow reaching desired standards of comfort.In a context in which traditional construction systems have still not resolved the social housing deficit in Colombia and which generate high costs for energy consumption in the search for thermal comfort,industrialized and efficient construction with high environmental quality provides solutions according to the economic,geographic,social and cultural context in Colombia.展开更多
The electrochemical performance of lithium-ion batteries significantly deteriorates in extreme cold.Thus,to ensure battery safety under various conditions,various heating and insulation strategies are implemented.The ...The electrochemical performance of lithium-ion batteries significantly deteriorates in extreme cold.Thus,to ensure battery safety under various conditions,various heating and insulation strategies are implemented.The present study proposes a hybrid heating approach combining active heating with passive insulation.Conceptual experiments were conducted to investigate the effects of phase change materials(PCMs),inlet water temperature,and intermittent pump startup strategies on battery performance.The obtained experimental results demonstrate that low temperatures lead to increased electrochemical impedance and reduced charge–discharge capacity in batteries.Notably,charge transfer resistance of 162 mΩwas observed at-30℃.Herein,the developed PCM-based battery heating system effectively extended the operational capacity of batteries in cold driving conditions and maintained battery warmth by leveraging the superior heat storage capability of the PCM.Additionally,after the switch off of the heating system,the charge capacity of the battery exceeded 80%owing to latent heat.The use of an intermittent heating strategy not only allowed to conserve energy but also maintained adequate heat storage within the battery module.At-30℃,this strategy enhanced the power efficiency of the cooling system by 35.94%with a reduction in capacity of only 0.8%compared to the continuous strategy.展开更多
An anodic TiO2/g-C3N4 hetero-junction and cathodic WO3/W were used to build a self-sustained catalytic fuel cell system for oxidizing rhodamine B or triclosan and reducing NO3^--N to N2 simultaneously.The WO3 nano-cat...An anodic TiO2/g-C3N4 hetero-junction and cathodic WO3/W were used to build a self-sustained catalytic fuel cell system for oxidizing rhodamine B or triclosan and reducing NO3^--N to N2 simultaneously.The WO3 nano-catalyst was formed in situ by heating and oxidizing a tungsten wire in air.Cyclic voltammetry and current-time curves were used to characterize the electrochemical properties of the electrodes and system.Aeration and activation of molecular oxygen by self-biased TiO2/g-C3N4 led to the formation of reactive oxidizing species in the fuel cell.The mechanism of simultaneous anodic oxidation of pollutants and cathodic reduction of nitrate was proposed.The spontaneously formed circuit and tiny current were used simultaneously in treating two kinds of wastewater in the reactor chambers,even without light illumination or an external applied voltage.This new catalytic pollution control route can lower energy consumption and degrade many other kinds of pollutants.展开更多
Pedestrian detection is one of the most important problems in the visual sensor network. Considering that the visual sensors have limited cap ability, we propose a pedestrian detection method with low energy consumpti...Pedestrian detection is one of the most important problems in the visual sensor network. Considering that the visual sensors have limited cap ability, we propose a pedestrian detection method with low energy consumption. Our method contains two parts: one is an Enhanced Self-Organizing Background Subtraction (ESOBS) based foreground segmentation module to obtain active areas in the observed region from the visual sensors; the other is an appearance model based detection module to detect the pedestrians from the foreground areas. Moreover, we create our own large pedestrian dataset according to the specific scene in the visual sensor network. Numerous experiments are conducted in both indoor and outdoor specific scenes. The experimental results show that our method is effective.展开更多
Based on the principle of selective permeability of cell membrane,a new urban sewage treatment device and urban sewage recycling system are designed.The new urban sewage treatment device consists of 10 parts,namely:in...Based on the principle of selective permeability of cell membrane,a new urban sewage treatment device and urban sewage recycling system are designed.The new urban sewage treatment device consists of 10 parts,namely:inlet pipe,secondary filter screen,tertiary rectifier,gravity separation chamber,floating material collection chamber,sewage shunt pipes,cell membrane filtration chamber,cell membrane purification device,sediment collection chamber and purified water collection chamber.The urban sewage recycling system consists of 6 parts,namely:urban sewage collection device,filtration and sedimentation separation device,floating matter collection device,cell membrane sewage purification device,sediment collection device and urban water pool.展开更多
As an important intermediate product, short-chain fatty acids(SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion...As an important intermediate product, short-chain fatty acids(SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion process. In order to obtain more SCFA and methane,most studies in literatures were centered on enhancing the hydrolysis of sludge anaerobic digestion which was proved as un-efficient. Though the alkaline pretreatment in our previous study increased both the hydrolysis and acidification processes, it had a vast chemical cost which was considered uneconomical. In this paper, a low energy consumption pretreatment method, i.e. enhanced the whole three stages of the anaerobic fermentation processes at the same time, was reported, by which hydrolysis and acidification were both enhanced, and the SCFA and methane generation can be significantly improved with a small quantity of chemical input. Firstly, the effect of different pretreated temperatures and pretreatment time on sludge hydrolyzation was compared. It was found that sludge pretreated at 100°C for 60 min can achieve the maximal hydrolyzation. Further, effects of different initial p Hs on acidification of the thermal pretreated sludge were investigated and the highest SCFA was observed at initial p H 9.0with fermentation time of 6 d, the production of which was 348.63 mg COD/g VSS(6.8 times higher than the blank test) and the acetic acid was dominant acid. Then, the mechanisms for this new pretreatment significantly improving SCFA production were discussed. Finally,the effect of this low energy consumption pretreatment on methane generation was investigated.展开更多
The Shanghai Meishan Iron and Steel Co., Ltd. has a large supply of coke oven gas (COG) and has the potential to develop and apply the spraying of COG on the surface of a sinter bed. The effects of the amount of COG, ...The Shanghai Meishan Iron and Steel Co., Ltd. has a large supply of coke oven gas (COG) and has the potential to develop and apply the spraying of COG on the surface of a sinter bed. The effects of the amount of COG, the spraying time, and the spraying distribution with the process on the quantity and quality indexes of sinter were investigated in the laboratory experi-ments. The results showed that the COG spraying can improve the sinter indexes to a large extent if appropriate parameters were used. It was found that an appropriate amount of COG, a relatively long spraying time, and a decreasing distribution of the COG amount with the spraying process all help to obtain a better performance for sinter quantity and quality indexes. When the COG spraying was applied to the No. 3 sintering machine, the sinter tumbler index increased by 0.45%, the overall finished product rate increased by 0.72%, the solid fuel consumption decreased by 4.06kg/t, the reducibility increased by 3.89%, and the cost of iron decreased by 5.29 CNY/t, and the CO2, SO2 and Nox emissions also decreased, thus proving the feasibility of this technology. Therefore, COG spraying provides a new way to improve sinter and also decrease the energy consumption and pollution.展开更多
The disinfection of waterborne pathogens from drinking water is extremely important for human health.Although countless efforts have been devoted for drinking water inactivation,challenges still exist in terms of rela...The disinfection of waterborne pathogens from drinking water is extremely important for human health.Although countless efforts have been devoted for drinking water inactivation,challenges still exist in terms of relative high energy consumption and complicated to implement and maintain.Here,silver nanoparticles anchoring wood carbon(Ag NPs/WC)membrane is developed as cost-effective,high flux,scalable filter for highly efficient electric field disinfection of water.Under electric field of 4 V voltage,the designed membrane achieved more than 5 log(99.999%)disinfection performance for different model bacteria,including Escherichia coli(E.coli),Enterococcus faecalis(E.faecalis),Salmonella enterica serovar Typhimirium(S.Typhimurium)and Bacillus subtilis(B.subtilis)with a high flux of 3.8 x 103 L m^(-2)h^(-1),extremely low energy consumption of 2 J L^(-1)m^(-2)and fantastic durability(7 days).The high disinfection performance of Ag NPs/WC membrane is attributed to the synergistic disinfection of carbon nanofibrils,Ag nanoparticles as well as the low tortuous structure of the channels in wood carbon.The Ag NPs/WC membrane presents a promising strategy for point-of-use drinking water electric field disinfection treatment.展开更多
基金Qingdao Entrepreneurship and Innovation Leading Researchers Program(No.19-3-2-40-zhc)Key Research and Development Program of Shandong Province(Nos.2019GHY112072,2019GHY112051)Project Supported by State Key Laboratory of Precision Measuring Technology and Instruments(No.pilab1906).
文摘Aiming at the contradiction between the depth control accuracy and the energy consumption of the self-sustaining intelligent buoy,a low energy consumption depth control method based on historical array for real-time geostrophic oceanography(Argo)data is proposed.As known from the buoy kinematic model,the volume of the external oil sac only depends on the density and temperature of seawater at hovering depth.Hence,we use historical Argo data to extract the fitting curves of density and temperature,and obtain the relationship between the hovering depth and the volume of the external oil sac.Genetic algorithm is used to carry out the optimal energy consumption motion planning for the depth control process,and the specific motion strategy of depth control process is obtained.Compared with dual closed-loop fuzzy PID control method and radial basis function(RBF)-PID method,the proposed method reduces energy consumption to 1/50 with the same accuracy.Finally,a hardware-in-the-loop simulation system was used to verify this method.When the error caused by fitting curves is not considered,the average error is 2.62 m,the energy consumption is 3.214×10^(4)J,and the error of energy consumption is only 0.65%.It shows the effectiveness and reliability of the method as well as the advantages of comprehensively considering the accuracy and energy consumption.
基金financially supported by the National Natural Science Foundation of China(No.22071173)the Natural Science Foundation of Tianjin City(No.20JCJQJC00050)。
文摘With the development of industrialization,the emission of volatile organic compounds(VOCs)to atmosphere causes serious environmental problems and the treatment of VOCs needs to consume a lot of energy.Moreover,indoor VOCs are seriously harmful to human health.Thus,there is an urgent requirement for the development of indoor VOCs treatment technologies.Catalytic degradation of VOCs,as a low energy consumption,high efficiency,and easy to achieve manner,has been widely studied in related fields.As a kind of transition metal catalyst,manganese-based catalysts have attracted a lot of attention in the catalytic degradation of VOCs because of their unique advantages including high efficiency,low cost,and excellent stability.This paper reviews the state-of-the-art progress of manganese-based catalysts for VOCs catalytic degradation.We introduce the thermocatalytic,photocatalytic and photo-thermocatalytic degradation of VOCs on manganese-based catalysts in this paper.The optimization of manganese-based catalysts by means of structural design,decorating modification and defect engineering is discussed.
基金financially supported by the National Natural Science Foundation of China(22272131,2221154071221972111)+4 种基金the Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1411)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2019073)Chongqing Doctoral Research and Innovation Project(CYB21106)Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and DevicesChongqing Key Laboratory for Advanced Materials and Technologies
文摘Electrocatalytic hydrogen evolution and sulfion(S^(2-))recycling are promising strategies for boosting H_(2)production and removing environmental pollutants.Here,a nano-Ni-functionalized molybdenum disulfide(MoS_(2))nanosheet was assembled on steel mesh(Ni-MoS_(2)/SM)for use in sulfide oxidation reaction-assisted,energy-saving H_(2)production.Experimental and theoretical calculation results revealed that anchoring nano-Ni on high-surface-area slack MoS_(2)nanosheets not only optimized catalyst adsorption of polysulfides but also played an important role in promoting hydrogen evolution reaction kinetics by absorbing OH_(ad),thereby greatly enhancing the catalytic performance toward sulfide oxidation reaction and hydrogen evolution reaction.Meanwhile,the Ni/MoS^(2-)based hydrogen evolution reaction+sulfide oxidation reaction system achieved nearly 100%hydrogen production efficiency and only consumed 61%less power per kWh than the oxygen evolution reaction+hydrogen evolution reaction system,which suggested our proposed Ni-MoS_(2)and novel hydrogen production system are promising for sustainable energy production.
基金the National Natural Science Foundation of China(51808004)Beijing Municipal Education Commission Basic Research Plan Project(110052971803/041).
文摘The PRT (Personal Rapid Transit) refers to a traffic system in which small vehicles automatically travel on a dedicated rail network or road network.It is a branch of monorail traffic and dedicated road traffic.It can change the situation of high energy consumption of traditional mountain transportation.It can reduce the amount of machinery used in the construction process to reduce carbon emissions.It is completely powered by electricity and reduces the friction of the cableway to reduce energy consumption.Its construction process uses small amount of traditional building materials such as concrete and steel.It has little damage to the ecological environment of the mountain,and can not damage the carbon sequestration ability of the plant community.It could serve as a means of transporting goods over long distance,reducing the need for big trucks and thus reducing the consumption of fossil fuels.
文摘This research aims to generate processes of industrialization and qualification of social housing in Colombia through prefabrication,low energy consumption and high environmental quality to reduce the current deficit and improve the quality of life in communities with fewer economic resources.Modular coordination and the use of materials with thermal behaviors,appropriate to the country’s climatic characteristics,reduce production costs,avoid waste and improve the architectural and environmental quality of social housing.Passive cooling strategies,such as controlling solar incursion and generating natural cross ventilation eliminate energy consumption and allow reaching desired standards of comfort.In a context in which traditional construction systems have still not resolved the social housing deficit in Colombia and which generate high costs for energy consumption in the search for thermal comfort,industrialized and efficient construction with high environmental quality provides solutions according to the economic,geographic,social and cultural context in Colombia.
基金supported by the National Natural Science Foundation of China(Grant No.52090062)。
文摘The electrochemical performance of lithium-ion batteries significantly deteriorates in extreme cold.Thus,to ensure battery safety under various conditions,various heating and insulation strategies are implemented.The present study proposes a hybrid heating approach combining active heating with passive insulation.Conceptual experiments were conducted to investigate the effects of phase change materials(PCMs),inlet water temperature,and intermittent pump startup strategies on battery performance.The obtained experimental results demonstrate that low temperatures lead to increased electrochemical impedance and reduced charge–discharge capacity in batteries.Notably,charge transfer resistance of 162 mΩwas observed at-30℃.Herein,the developed PCM-based battery heating system effectively extended the operational capacity of batteries in cold driving conditions and maintained battery warmth by leveraging the superior heat storage capability of the PCM.Additionally,after the switch off of the heating system,the charge capacity of the battery exceeded 80%owing to latent heat.The use of an intermittent heating strategy not only allowed to conserve energy but also maintained adequate heat storage within the battery module.At-30℃,this strategy enhanced the power efficiency of the cooling system by 35.94%with a reduction in capacity of only 0.8%compared to the continuous strategy.
基金supported by the National Natural Science Foundation of China (21177018, 21677025)the Program of Introducing Talents of Discipline to Universities (B13012)~~
文摘An anodic TiO2/g-C3N4 hetero-junction and cathodic WO3/W were used to build a self-sustained catalytic fuel cell system for oxidizing rhodamine B or triclosan and reducing NO3^--N to N2 simultaneously.The WO3 nano-catalyst was formed in situ by heating and oxidizing a tungsten wire in air.Cyclic voltammetry and current-time curves were used to characterize the electrochemical properties of the electrodes and system.Aeration and activation of molecular oxygen by self-biased TiO2/g-C3N4 led to the formation of reactive oxidizing species in the fuel cell.The mechanism of simultaneous anodic oxidation of pollutants and cathodic reduction of nitrate was proposed.The spontaneously formed circuit and tiny current were used simultaneously in treating two kinds of wastewater in the reactor chambers,even without light illumination or an external applied voltage.This new catalytic pollution control route can lower energy consumption and degrade many other kinds of pollutants.
基金This paper was supported partially by the Natural Science Foundation of China under Grants No. 60833009, No. 61003280 the National Science Fund for Distinguished Young Scholars under Grant No. 60925010+1 种基金 the Funds for Creative Research Groups of China under Grant No.61121001 the Pro- gram for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT1049.
文摘Pedestrian detection is one of the most important problems in the visual sensor network. Considering that the visual sensors have limited cap ability, we propose a pedestrian detection method with low energy consumption. Our method contains two parts: one is an Enhanced Self-Organizing Background Subtraction (ESOBS) based foreground segmentation module to obtain active areas in the observed region from the visual sensors; the other is an appearance model based detection module to detect the pedestrians from the foreground areas. Moreover, we create our own large pedestrian dataset according to the specific scene in the visual sensor network. Numerous experiments are conducted in both indoor and outdoor specific scenes. The experimental results show that our method is effective.
基金Supported by Undergraduate Innovation and Enterpreneurship Training Program of Dalian University(202111258202).
文摘Based on the principle of selective permeability of cell membrane,a new urban sewage treatment device and urban sewage recycling system are designed.The new urban sewage treatment device consists of 10 parts,namely:inlet pipe,secondary filter screen,tertiary rectifier,gravity separation chamber,floating material collection chamber,sewage shunt pipes,cell membrane filtration chamber,cell membrane purification device,sediment collection chamber and purified water collection chamber.The urban sewage recycling system consists of 6 parts,namely:urban sewage collection device,filtration and sedimentation separation device,floating matter collection device,cell membrane sewage purification device,sediment collection device and urban water pool.
基金supported by the National Key Research and Development Program of China(2022YFB3603802)the National Natural Science Foundation of China(62374033)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ129)。
基金financially supported by the National Natural Science Foundation of China(61674050,62004056,and 61874158)the Project of Distinguished Young of Hebei Province(A2018201231)+7 种基金the Support Program for the Top Young Talents of Hebei Province(70280011807)the Hundred Persons Plan of Hebei Province(E2018050004 and E2018050003)the Supporting Plan for 100 Excellent Innovative Talents in Colleges and Universities of Hebei Province(SLRC2019018)the Special Project of Strategic Leading Science and Technology of Chinese Academy of Sciences(XDB44000000-7)the Special Support Funds for National High Level Talents(041500120001)Hebei Basic Research Special Key Project(F2021201045)the Science and Technology Project of Hebei Education Department(QN2020178 and QN2021026)Singapore Ministry of Education(Ac RF TIER 2-MOE2019-T2-2-075)。
基金supported by the National Natural Science Foundation of China(61974029,62274118)the Natural Science Foundation for Distinguished Young Scholars of Fujian Province(2020J06012)+1 种基金Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ129)Singapore Ministry of Education under its AcRF Tier 2(MOE-T2EP50220-0001)。
基金supported by the National Science Foundation of China (Grant no. 51408419)the National Key Technology Research and Development Program of China (Grant nos. 2014BAL02B02-03 and 2014BAC29B01)the Key Program for International S&T Cooperation Projects of China (Grant no. 2012DFG91380)
文摘As an important intermediate product, short-chain fatty acids(SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion process. In order to obtain more SCFA and methane,most studies in literatures were centered on enhancing the hydrolysis of sludge anaerobic digestion which was proved as un-efficient. Though the alkaline pretreatment in our previous study increased both the hydrolysis and acidification processes, it had a vast chemical cost which was considered uneconomical. In this paper, a low energy consumption pretreatment method, i.e. enhanced the whole three stages of the anaerobic fermentation processes at the same time, was reported, by which hydrolysis and acidification were both enhanced, and the SCFA and methane generation can be significantly improved with a small quantity of chemical input. Firstly, the effect of different pretreated temperatures and pretreatment time on sludge hydrolyzation was compared. It was found that sludge pretreated at 100°C for 60 min can achieve the maximal hydrolyzation. Further, effects of different initial p Hs on acidification of the thermal pretreated sludge were investigated and the highest SCFA was observed at initial p H 9.0with fermentation time of 6 d, the production of which was 348.63 mg COD/g VSS(6.8 times higher than the blank test) and the acetic acid was dominant acid. Then, the mechanisms for this new pretreatment significantly improving SCFA production were discussed. Finally,the effect of this low energy consumption pretreatment on methane generation was investigated.
基金This work was supported by the National Natural Science Foundation of China(Grant Number 51804027)Fundamental Research Funds for the Central Universities(FRF-IC-18-010).
文摘The Shanghai Meishan Iron and Steel Co., Ltd. has a large supply of coke oven gas (COG) and has the potential to develop and apply the spraying of COG on the surface of a sinter bed. The effects of the amount of COG, the spraying time, and the spraying distribution with the process on the quantity and quality indexes of sinter were investigated in the laboratory experi-ments. The results showed that the COG spraying can improve the sinter indexes to a large extent if appropriate parameters were used. It was found that an appropriate amount of COG, a relatively long spraying time, and a decreasing distribution of the COG amount with the spraying process all help to obtain a better performance for sinter quantity and quality indexes. When the COG spraying was applied to the No. 3 sintering machine, the sinter tumbler index increased by 0.45%, the overall finished product rate increased by 0.72%, the solid fuel consumption decreased by 4.06kg/t, the reducibility increased by 3.89%, and the cost of iron decreased by 5.29 CNY/t, and the CO2, SO2 and Nox emissions also decreased, thus proving the feasibility of this technology. Therefore, COG spraying provides a new way to improve sinter and also decrease the energy consumption and pollution.
基金supported by the National Natural Science Foundation of China(No.21876072)the Talent Innovation and Entrepreneurship Project of Lanzhou(No.2018-RC-04)+1 种基金Special Fund Project for the Central Government to Guide Local Science and Technology Development(2020)the 111 Project(No.B20027)。
文摘The disinfection of waterborne pathogens from drinking water is extremely important for human health.Although countless efforts have been devoted for drinking water inactivation,challenges still exist in terms of relative high energy consumption and complicated to implement and maintain.Here,silver nanoparticles anchoring wood carbon(Ag NPs/WC)membrane is developed as cost-effective,high flux,scalable filter for highly efficient electric field disinfection of water.Under electric field of 4 V voltage,the designed membrane achieved more than 5 log(99.999%)disinfection performance for different model bacteria,including Escherichia coli(E.coli),Enterococcus faecalis(E.faecalis),Salmonella enterica serovar Typhimirium(S.Typhimurium)and Bacillus subtilis(B.subtilis)with a high flux of 3.8 x 103 L m^(-2)h^(-1),extremely low energy consumption of 2 J L^(-1)m^(-2)and fantastic durability(7 days).The high disinfection performance of Ag NPs/WC membrane is attributed to the synergistic disinfection of carbon nanofibrils,Ag nanoparticles as well as the low tortuous structure of the channels in wood carbon.The Ag NPs/WC membrane presents a promising strategy for point-of-use drinking water electric field disinfection treatment.