Objective Exposure to high intensity, low frequency noise(HI-LFN) causes vibroacoustic disease(VAD),with memory deficit as a primary non-auditory symptomatic effect of VAD. However, the underlying mechanism of the mem...Objective Exposure to high intensity, low frequency noise(HI-LFN) causes vibroacoustic disease(VAD),with memory deficit as a primary non-auditory symptomatic effect of VAD. However, the underlying mechanism of the memory deficit is unknown. This study aimed to characterize potential mechanisms involving morphological changes of neurons and nerve fibers in the hippocampus, after exposure to HILFN.Methods Adult wild-type and transient receptor potential vanilloid subtype 4 knockout(TRPV4^(-/-)) mice were used for construction of the HI-LFN injury model. The new object recognition task and the Morris water maze test were used to measure the memory of these animals. Hemoxylin and eosin and immunofluorescence staining were used to examine morphological changes of the hippocampus after exposure to HI-LFN.Results The expression of TRPV4 was significantly upregulated in the hippocampus after HI-LFN exposure. Furthermore, memory deficits correlated with lower densities of neurons and neurofilamentpositive nerve fibers in the cornu ammonis 1(CA1) and dentate gyrus(DG) hippocampal areas in wildtype mice. However, TRPV4^(-/-)mice showed better performance in memory tests and more integrated neurofilament-positive nerve fibers in the CA1 and DG areas after HI-LFN exposure.Conclusion TRPV4 up-regulation induced neurofilament positive nerve fiber injury in the hippocampus,which was a possible mechanism for memory impairment and cognitive decline resulting from HI-LFN exposure. Together, these results identified a promising therapeutic target for treating cognitive dysfunction in VAD patients.展开更多
Low frequency noise behaviors of partially depleted silicon-on-insulator(PDSOI) n-channel metal-oxide semiconductors(MOS) transistors with and without ion implantation into the buried oxide are investigated in this pa...Low frequency noise behaviors of partially depleted silicon-on-insulator(PDSOI) n-channel metal-oxide semiconductors(MOS) transistors with and without ion implantation into the buried oxide are investigated in this paper. Owing to ion implantation-induced electron traps in the buried oxide and back interface states, back gate threshold voltage increases from44.48 V to 51.47 V and sub-threshold swing increases from 2.47 V/dec to 3.37 V/dec, while electron field effect mobility decreases from 475.44 cm2/V·s to 363.65 cm2/V·s. In addition, the magnitude of normalized low frequency noise also greatly increases, which indicates that the intrinsic electronic performances are degenerated after ion implantation processing. According to carrier number fluctuation theory, the extracted flat-band voltage noise power spectral densities in the PDSOI devices with and without ion implantation are equal to 7×10-10V2·Hz-1and 2.7×10-8V2·Hz-1, respectively, while the extracted average trap density in the buried oxide increases from 1.42×1017cm-3·e V-1to 6.16×1018cm-3·e V-1. Based on carrier mobility fluctuation theory, the extracted average Hooge’s parameter in these devices increases from 3.92×10-5to 1.34×10-2after ion implantation processing. Finally, radiation responses in the PDSOI devices are investigated. Owing to radiation-induced positive buried oxide trapped charges, back gate threshold voltage decreases with the increase of the total dose. After radiation reaches up to a total dose of 1 M·rad(si), the shifts of back gate threshold voltage in the SOI devices with and without ion implantation are-10.82 V and-31.84 V, respectively. The low frequency noise behaviors in these devices before and after radiation are also compared and discussed.展开更多
The instabilities of indium–zinc oxide thin film transistors under bias and/or illumination stress are studied in this paper. Firstly, illumination experiments are performed, which indicates the variations of current...The instabilities of indium–zinc oxide thin film transistors under bias and/or illumination stress are studied in this paper. Firstly, illumination experiments are performed, which indicates the variations of current–voltage characteristics and electrical parameters(such as threshold voltage and sub-threshold swing) are dominated by the stress-induced ionized oxygen vacancies and acceptor-like states. The dependence of degradation on light wavelength is also investigated. More negative shift of threshold voltage and greater sub-threshold swing are observed with the decrease of light wavelength.Subsequently, a negative bias illumination stress experiment is carried out. The degradation of the device is aggravated due to the decrease of recombination effects between ionized oxygen vacancies and free carriers. Moreover, the contributions of ionized oxygen vacancies and acceptor-like states are separated by using the mid-gap method. In addition, ionized oxygen vacancies are partially recombined at room temperature and fully recombined at high temperature. Finally, low-frequency noise is measured before and after negative bias illumination stress. Experimental results show few variations of the oxide trapped charges are generated during stress, which is consistent with the proposed mechanism.展开更多
The I-V characteristics and low frequency noises for indium zinc oxide thin film transistor are measured between 250 K and 430 K. The experimental results show that drain currents are thermally activated following the...The I-V characteristics and low frequency noises for indium zinc oxide thin film transistor are measured between 250 K and 430 K. The experimental results show that drain currents are thermally activated following the Meyer Neldel rule, which can be explained by the multiple-trapping process. Moreover, the field effect electron mobility firstly increases, and then decreases with the increase of temperature, while the threshold voltage decreases with increasing the temperature. The activation energy and the density of localized gap states are extracted. A noticeable increase in the density of localized states is observed at the higher temperatures.展开更多
Based on the frequency-domain multimode theoretical model, detailed investigations on the noise characteristic of the semiconductor ring laser (SRL) are first performed in this paper. The comprehensive nonlinear ter...Based on the frequency-domain multimode theoretical model, detailed investigations on the noise characteristic of the semiconductor ring laser (SRL) are first performed in this paper. The comprehensive nonlinear terms related to the third order nonlinear susceptibility Z3 are included in this model; the Langevin noise sources for electric field and carrier density fluctuations are also taken into account. As the injection current increases, the SRL may present several operation regimes. Remarkable and unusual low frequency noise enhancement in the form of a broad low frequency tail extending all the way to the relaxation oscillation peak is observed in any of the operation regimes of SRLs. The influences of the backscattering coefficient on the relative intensity noise (RIN) spectrum in typical operation regimes are investigated in detail.展开更多
A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noi...A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noise. A self-calibrated voltage controlled oscillator is proposed in cooperation with the automatic frequency calibration circuit, whose accurate binary search algorithm helps reduce the VCO tuning curve coverage, which reduces the VCO noise contribution at PLL output phase noise. A low noise, charge pump is also introduced to extend the tuning voltage range of the proposed VCO, which further reduces its phase noise contribution. The frequency synthesizer generates 9.75-11.5 GHz high frequency wide band local oscillator (LO) carriers. Tested 11.5 GHz LO bears a phase noise of-104 dBc/Hz at 1 MHz frequency offset. The total power dissipation of the proposed frequency synthesizer is 48 mW. The area of the proposed frequency synthesizer is 0.3 mm^2, including bias circuits and buffers.展开更多
A fourth-order Gm-C Chebyshev low-pass filter is presented as channel selection filter for reconfigurable multi-mode wireless receivers. Low-noise technologies are proposed in optimizing the noise characteristics of b...A fourth-order Gm-C Chebyshev low-pass filter is presented as channel selection filter for reconfigurable multi-mode wireless receivers. Low-noise technologies are proposed in optimizing the noise characteristics of both the Gm cells and the filter topology. A frequency tuning strategy is used by tuning both the transconductance of the Gm cells and the capacitance of the capacitor banks. To achieve accurate cut-off frequencies, an on-chip calibration circuit is presented to compensate for the frequency inaccuracy introduced by process variation. The filter is fabricated in a 0.13 m CMOS process. It exhibits a wide programmable bandwidth from 322.5 k Hz to20 MHz. Measured results show that the filter has low input referred noise of 5.9 n V/(Hz)^(1/2) and high out-of-band IIP3 of 16.2 d Bm. It consumes 4.2 and 9.5 m W from a 1 V power supply at its lowest and highest cut-off frequencies respectively.展开更多
This paper studies the amplitude of random telegraph noise (RTN) caused by a single trap in the sili- con film of ultra-thin buried oxide (UTBOX) silicon-on-insulator (SOl) devices. The film-defect-related RTN w...This paper studies the amplitude of random telegraph noise (RTN) caused by a single trap in the sili- con film of ultra-thin buried oxide (UTBOX) silicon-on-insulator (SOl) devices. The film-defect-related RTN was identified and analyzed by low frequency noise measurement and time domain measurement. Emphasis is on the relative amplitude AID/ID, which is studied in the function of the front-gate, the back-gate and the drain-to-source biases. Interesting asymmetric or symmetric VDS dependence of switched source and drain are observed and sup- ported by calibrated Sentaurus simulations. It is believed the asymmetry of the VDs dependence of the switched source and drain is related to the lateral trap position along the source and drain.展开更多
The homojunction based on Ti_(3)C_(2)T_(x) MXene-doped In_(2)O_(3) and indium oxide as the channel layer is real-ized in high-performance metal oxide thin film transistors(TFTs).Doping of MXene into In_(2)O_(3) result...The homojunction based on Ti_(3)C_(2)T_(x) MXene-doped In_(2)O_(3) and indium oxide as the channel layer is real-ized in high-performance metal oxide thin film transistors(TFTs).Doping of MXene into In_(2)O_(3) results in n-type semiconductor behavior,realizing tunable work function of In_(2)O_(3) from 5.11 to 4.79 eV as MXene content increases from 0 to 2 wt.%.MXene-doped In_(2)O_(3)-based homojunction TFT presents optimal per-formance with electron mobilities of greater than 27.10 cm^(2)/(V s)at 240°C,far exceeding the maximum mobility of 3.91 cm^(2)/(V s)for single-layer In_(2)O_(3)TFTs.The improved performance originates from boosting of a two-dimensional electron gas(2DEG)formed at carefully engineered In_(2)O_(3)/MXene-doped In_(2)O_(3)ox-ide homojunction interface.Besides,the transformation in conduction mechanism leads to better stability of MXene-doped In_(2)O_(3) homojunction devices compared to undoped bilayer In_(2)O_(3).Low-frequency noise further illustrates that doping MXene into In_(2)O_(3) helps to reduce the device trap density,demonstrating excellent electrical performance.A resistor-loaded unipolar inverter based on In_(2)O_(3)/0.5%MXene-In_(2)O_(3)TFT has demonstrated full swing characteristics and a high gain of 13.The effective doping of MXene into constructed homojunction TFTs not only contributes to improved stability,but also provides an ef-fective strategy for designing novel homojunction TFTs for low-cost oxide-based electronics.展开更多
Ammonia (NH3) is a toxic gas released in different industrial, agricultural and natural processes. It is also a biomarker for some diseases. These require NH3 sensors for health and safety reasons. To boost the sens...Ammonia (NH3) is a toxic gas released in different industrial, agricultural and natural processes. It is also a biomarker for some diseases. These require NH3 sensors for health and safety reasons. To boost the sensitiv- ity of solid-state sensors, the effective sensing area should be increased. Two methods are explored and compared using an evaporating pool of 0.5 mL NH4OH (28% NH3). In the first method an array of Si nanowires (Si NWA) is obtained via metal-assisted-electrochemical etching to increase the effective surface area. In the second method CVD graphene is suspended on top of the Si nanowires to act as a sensing layer. Both the effective surface area as well as the density of surface traps influences the amplitude of the response. The effective surface area of Si NWAs is 100 × larger than that of suspended graphene for the same top surface area, leading to a larger response in amp- litude by a factor of -7 notwithstanding a higher trap density in suspended graphene. The use of Si NWAs in- creases the response rate for both Si NWAs as well as the suspended graphene due to more effective NH3 diffu- sion processes.展开更多
In this work,the performance of Lg = 22 nm In(0.75)Ga(0.25)As channel-based high electron mobility transistor(HEMT) on InP substrate is compared with metamorphic high electron mobility transistor(MHEMT) on GaA...In this work,the performance of Lg = 22 nm In(0.75)Ga(0.25)As channel-based high electron mobility transistor(HEMT) on InP substrate is compared with metamorphic high electron mobility transistor(MHEMT) on GaAs substrate.The devices features heavily doped In(0.6)Ga(0.4)As source/drain(S/D) regions,Si double δ-doping planar sheets on either side of the In(0.75)Ga(0.25) As channel layer to enhance the transconductance,and buried Pt metal gate technology for reducing short channel effects.The TCAD simulation results show that the InP HEMT performance is superior to GaAs MHEMT in terms of fT,f(max) and transconductance(g(mmax)).The 22 nm InP HEMT shows an fT of 733 GHz and an f(max) of 1340 GHz where as in GaAs MHEMT it is 644 GHz and 924 GHz,respectively.InGaAs channel-based HEMTs on InP/GaAs substrates are suitable for future sub-millimeter and millimeter wave applications.展开更多
基金funded by the Chongqing Postdoctoral Innovative Talent Support Program[Grant No.CQBX2021008]the Chongqing Talents Project[CQYC202105043]。
文摘Objective Exposure to high intensity, low frequency noise(HI-LFN) causes vibroacoustic disease(VAD),with memory deficit as a primary non-auditory symptomatic effect of VAD. However, the underlying mechanism of the memory deficit is unknown. This study aimed to characterize potential mechanisms involving morphological changes of neurons and nerve fibers in the hippocampus, after exposure to HILFN.Methods Adult wild-type and transient receptor potential vanilloid subtype 4 knockout(TRPV4^(-/-)) mice were used for construction of the HI-LFN injury model. The new object recognition task and the Morris water maze test were used to measure the memory of these animals. Hemoxylin and eosin and immunofluorescence staining were used to examine morphological changes of the hippocampus after exposure to HI-LFN.Results The expression of TRPV4 was significantly upregulated in the hippocampus after HI-LFN exposure. Furthermore, memory deficits correlated with lower densities of neurons and neurofilamentpositive nerve fibers in the cornu ammonis 1(CA1) and dentate gyrus(DG) hippocampal areas in wildtype mice. However, TRPV4^(-/-)mice showed better performance in memory tests and more integrated neurofilament-positive nerve fibers in the CA1 and DG areas after HI-LFN exposure.Conclusion TRPV4 up-regulation induced neurofilament positive nerve fiber injury in the hippocampus,which was a possible mechanism for memory impairment and cognitive decline resulting from HI-LFN exposure. Together, these results identified a promising therapeutic target for treating cognitive dysfunction in VAD patients.
基金supported by the National Natural Science Foundation of China(Grant Nos.61204112 and 61204116)
文摘Low frequency noise behaviors of partially depleted silicon-on-insulator(PDSOI) n-channel metal-oxide semiconductors(MOS) transistors with and without ion implantation into the buried oxide are investigated in this paper. Owing to ion implantation-induced electron traps in the buried oxide and back interface states, back gate threshold voltage increases from44.48 V to 51.47 V and sub-threshold swing increases from 2.47 V/dec to 3.37 V/dec, while electron field effect mobility decreases from 475.44 cm2/V·s to 363.65 cm2/V·s. In addition, the magnitude of normalized low frequency noise also greatly increases, which indicates that the intrinsic electronic performances are degenerated after ion implantation processing. According to carrier number fluctuation theory, the extracted flat-band voltage noise power spectral densities in the PDSOI devices with and without ion implantation are equal to 7×10-10V2·Hz-1and 2.7×10-8V2·Hz-1, respectively, while the extracted average trap density in the buried oxide increases from 1.42×1017cm-3·e V-1to 6.16×1018cm-3·e V-1. Based on carrier mobility fluctuation theory, the extracted average Hooge’s parameter in these devices increases from 3.92×10-5to 1.34×10-2after ion implantation processing. Finally, radiation responses in the PDSOI devices are investigated. Owing to radiation-induced positive buried oxide trapped charges, back gate threshold voltage decreases with the increase of the total dose. After radiation reaches up to a total dose of 1 M·rad(si), the shifts of back gate threshold voltage in the SOI devices with and without ion implantation are-10.82 V and-31.84 V, respectively. The low frequency noise behaviors in these devices before and after radiation are also compared and discussed.
基金supported by the Opening Fund of Key Laboratory of Silicon Device Technology,Chinese Academy of Sciences(Grant No.KLSDTJJ2018-6)the National Natural Science Foundation of China(Grant No.61574048)+1 种基金the Science and Technology Research Project of Guangdong Province,China(Grant No.2015B090912002)the Pearl River S&T Nova Program of Guangzhou City,China(Grant No.201710010172)
文摘The instabilities of indium–zinc oxide thin film transistors under bias and/or illumination stress are studied in this paper. Firstly, illumination experiments are performed, which indicates the variations of current–voltage characteristics and electrical parameters(such as threshold voltage and sub-threshold swing) are dominated by the stress-induced ionized oxygen vacancies and acceptor-like states. The dependence of degradation on light wavelength is also investigated. More negative shift of threshold voltage and greater sub-threshold swing are observed with the decrease of light wavelength.Subsequently, a negative bias illumination stress experiment is carried out. The degradation of the device is aggravated due to the decrease of recombination effects between ionized oxygen vacancies and free carriers. Moreover, the contributions of ionized oxygen vacancies and acceptor-like states are separated by using the mid-gap method. In addition, ionized oxygen vacancies are partially recombined at room temperature and fully recombined at high temperature. Finally, low-frequency noise is measured before and after negative bias illumination stress. Experimental results show few variations of the oxide trapped charges are generated during stress, which is consistent with the proposed mechanism.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61204112.61204089 and 61306099the Guangdong Provincial Natural Science Foundation under Grant No 2014A030313656
文摘The I-V characteristics and low frequency noises for indium zinc oxide thin film transistor are measured between 250 K and 430 K. The experimental results show that drain currents are thermally activated following the Meyer Neldel rule, which can be explained by the multiple-trapping process. Moreover, the field effect electron mobility firstly increases, and then decreases with the increase of temperature, while the threshold voltage decreases with increasing the temperature. The activation energy and the density of localized gap states are extracted. A noticeable increase in the density of localized states is observed at the higher temperatures.
基金Project supported by the Major State Basic Research Development Program of China (Grant No.2010CB328206)
文摘Based on the frequency-domain multimode theoretical model, detailed investigations on the noise characteristic of the semiconductor ring laser (SRL) are first performed in this paper. The comprehensive nonlinear terms related to the third order nonlinear susceptibility Z3 are included in this model; the Langevin noise sources for electric field and carrier density fluctuations are also taken into account. As the injection current increases, the SRL may present several operation regimes. Remarkable and unusual low frequency noise enhancement in the form of a broad low frequency tail extending all the way to the relaxation oscillation peak is observed in any of the operation regimes of SRLs. The influences of the backscattering coefficient on the relative intensity noise (RIN) spectrum in typical operation regimes are investigated in detail.
文摘A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noise. A self-calibrated voltage controlled oscillator is proposed in cooperation with the automatic frequency calibration circuit, whose accurate binary search algorithm helps reduce the VCO tuning curve coverage, which reduces the VCO noise contribution at PLL output phase noise. A low noise, charge pump is also introduced to extend the tuning voltage range of the proposed VCO, which further reduces its phase noise contribution. The frequency synthesizer generates 9.75-11.5 GHz high frequency wide band local oscillator (LO) carriers. Tested 11.5 GHz LO bears a phase noise of-104 dBc/Hz at 1 MHz frequency offset. The total power dissipation of the proposed frequency synthesizer is 48 mW. The area of the proposed frequency synthesizer is 0.3 mm^2, including bias circuits and buffers.
基金Project supported by the National Natural Science Foundation of China(No.61574045)
文摘A fourth-order Gm-C Chebyshev low-pass filter is presented as channel selection filter for reconfigurable multi-mode wireless receivers. Low-noise technologies are proposed in optimizing the noise characteristics of both the Gm cells and the filter topology. A frequency tuning strategy is used by tuning both the transconductance of the Gm cells and the capacitance of the capacitor banks. To achieve accurate cut-off frequencies, an on-chip calibration circuit is presented to compensate for the frequency inaccuracy introduced by process variation. The filter is fabricated in a 0.13 m CMOS process. It exhibits a wide programmable bandwidth from 322.5 k Hz to20 MHz. Measured results show that the filter has low input referred noise of 5.9 n V/(Hz)^(1/2) and high out-of-band IIP3 of 16.2 d Bm. It consumes 4.2 and 9.5 m W from a 1 V power supply at its lowest and highest cut-off frequencies respectively.
文摘This paper studies the amplitude of random telegraph noise (RTN) caused by a single trap in the sili- con film of ultra-thin buried oxide (UTBOX) silicon-on-insulator (SOl) devices. The film-defect-related RTN was identified and analyzed by low frequency noise measurement and time domain measurement. Emphasis is on the relative amplitude AID/ID, which is studied in the function of the front-gate, the back-gate and the drain-to-source biases. Interesting asymmetric or symmetric VDS dependence of switched source and drain are observed and sup- ported by calibrated Sentaurus simulations. It is believed the asymmetry of the VDs dependence of the switched source and drain is related to the lateral trap position along the source and drain.
基金the National Natural Science Foundation of China(No.11774001)the Anhui Project(No.Z010118169).
文摘The homojunction based on Ti_(3)C_(2)T_(x) MXene-doped In_(2)O_(3) and indium oxide as the channel layer is real-ized in high-performance metal oxide thin film transistors(TFTs).Doping of MXene into In_(2)O_(3) results in n-type semiconductor behavior,realizing tunable work function of In_(2)O_(3) from 5.11 to 4.79 eV as MXene content increases from 0 to 2 wt.%.MXene-doped In_(2)O_(3)-based homojunction TFT presents optimal per-formance with electron mobilities of greater than 27.10 cm^(2)/(V s)at 240°C,far exceeding the maximum mobility of 3.91 cm^(2)/(V s)for single-layer In_(2)O_(3)TFTs.The improved performance originates from boosting of a two-dimensional electron gas(2DEG)formed at carefully engineered In_(2)O_(3)/MXene-doped In_(2)O_(3)ox-ide homojunction interface.Besides,the transformation in conduction mechanism leads to better stability of MXene-doped In_(2)O_(3) homojunction devices compared to undoped bilayer In_(2)O_(3).Low-frequency noise further illustrates that doping MXene into In_(2)O_(3) helps to reduce the device trap density,demonstrating excellent electrical performance.A resistor-loaded unipolar inverter based on In_(2)O_(3)/0.5%MXene-In_(2)O_(3)TFT has demonstrated full swing characteristics and a high gain of 13.The effective doping of MXene into constructed homojunction TFTs not only contributes to improved stability,but also provides an ef-fective strategy for designing novel homojunction TFTs for low-cost oxide-based electronics.
基金financial support of EPSRC via the EEE department
文摘Ammonia (NH3) is a toxic gas released in different industrial, agricultural and natural processes. It is also a biomarker for some diseases. These require NH3 sensors for health and safety reasons. To boost the sensitiv- ity of solid-state sensors, the effective sensing area should be increased. Two methods are explored and compared using an evaporating pool of 0.5 mL NH4OH (28% NH3). In the first method an array of Si nanowires (Si NWA) is obtained via metal-assisted-electrochemical etching to increase the effective surface area. In the second method CVD graphene is suspended on top of the Si nanowires to act as a sensing layer. Both the effective surface area as well as the density of surface traps influences the amplitude of the response. The effective surface area of Si NWAs is 100 × larger than that of suspended graphene for the same top surface area, leading to a larger response in amp- litude by a factor of -7 notwithstanding a higher trap density in suspended graphene. The use of Si NWAs in- creases the response rate for both Si NWAs as well as the suspended graphene due to more effective NH3 diffu- sion processes.
文摘In this work,the performance of Lg = 22 nm In(0.75)Ga(0.25)As channel-based high electron mobility transistor(HEMT) on InP substrate is compared with metamorphic high electron mobility transistor(MHEMT) on GaAs substrate.The devices features heavily doped In(0.6)Ga(0.4)As source/drain(S/D) regions,Si double δ-doping planar sheets on either side of the In(0.75)Ga(0.25) As channel layer to enhance the transconductance,and buried Pt metal gate technology for reducing short channel effects.The TCAD simulation results show that the InP HEMT performance is superior to GaAs MHEMT in terms of fT,f(max) and transconductance(g(mmax)).The 22 nm InP HEMT shows an fT of 733 GHz and an f(max) of 1340 GHz where as in GaAs MHEMT it is 644 GHz and 924 GHz,respectively.InGaAs channel-based HEMTs on InP/GaAs substrates are suitable for future sub-millimeter and millimeter wave applications.