A series of char samples were derived from pyrolysis of two typical low-rank coals in China (Shengli lig- nite and Shenmu bituminous coal) at low, medium and fast heating rates, respectively, to the same pyrol- ysis...A series of char samples were derived from pyrolysis of two typical low-rank coals in China (Shengli lig- nite and Shenmu bituminous coal) at low, medium and fast heating rates, respectively, to the same pyrol- ysis temperature 750℃. Then these chars were characterized by means of thermogravimetric analysis and Fourier transform infrared spectrometer with the aim to investigate the influence of heating rate in pyrolysis process on gasification reactivity and surface chemistry of them. Besides, a homogeneous model was used to quantitatively analyze the activation energy of gasification reaction. The results reveal that Shengli lignite and its derived chars behave higher gasification reactivity and have less content of oxygen functional groups than Shenmu coal and chars. Meanwhile, chars derived from Shengli lignite at 50℃/min and Shenmu coal at 200℃/min have the greatest gasification reactivity, respectively. The oxygen functional groups in Shengli lignite are easily thermo-decomposed, and they are less affected by the heating rate, while that in Shenmu coal have a significant change with the variation of heating rate. In addition, there is no good correlation between the change of oxygen functional groups and that of the gasification reactivity of the derived chars from pyrolysis at different heating rates.展开更多
The pretreatment of low rank coal with nitric acid oxidation can promote its bio-liquefaction. However, the detailed mechanism of which remains an unresolved problem. In the present work, the characteristics of Fushun...The pretreatment of low rank coal with nitric acid oxidation can promote its bio-liquefaction. However, the detailed mechanism of which remains an unresolved problem. In the present work, the characteristics of Fushun coal before and after oxidation by nitric acid were investigated combined with elemental composition, pore volume and pore size, Zeta potential, FT-IR, and 13C solid NMR spectrum analysis. The results show that the inorganic substance inlaid in coal are dissolved by ni- tric acid, which results in the decrease of coal ash content and increase of pore volume and pore size. Furthermore, there exist obvious chemical reactions between nitric acid and the functional groups of coal including aromatic ring carboxylation, side chain alkyl of aromatic ring oxidation and aromatic ring nitration. Among these reactions, some led to the increase in content of carboxyl, aliphatic carbon connected with O and humic acid carbon, while others caused the reduction of aromaticity, methyl carbon, substituted aryl carbon and side chain.展开更多
The high-value utilization of low-rank coal would allow for expanding energy sources,improving energy efficiencies,and alleviating environmental issues.In order to use low-rank coal effectively,the hypercoals(HPCs)wer...The high-value utilization of low-rank coal would allow for expanding energy sources,improving energy efficiencies,and alleviating environmental issues.In order to use low-rank coal effectively,the hypercoals(HPCs)were co-extracted from two types of low-rank coal and biomass via N-methyl-2-purrolidinone(NMP)under mild conditions.The structures of the HPCs and residues were characterized by proximate and ultimate analysis,Raman spectra,and Fourier transform infrared(FT-IR)spectra.The carbon structure changes within the raw coals and HPCs were discussed.The individual thermal dissolution of Xibu(XB)coal,Guandi(GD)coal,and the biomass demonstrated that the biomass provided the lowest thermal dissolution yield Y1 and the highest thermal soluble yield Y2 at 280℃,and the ash content of three HPCs decreased as the extraction temperature rose.Co-thermal extractions in NMP at various coal/biomass mass ratios were performed,demonstrating a positive synergic effect for Y2 in the whole coal/biomass mass ratios.The maximum value of Y2 was 52.25wt% for XB coal obtained with a XB coal/biomass of 50wt% biomass.The maximum value of Y2 was 50.77wt% for GD coal obtained with a GD coal/biomass of 1:4.The difference for the optimal coal/biomass mass ratios between XB and GD coals could be attributed to the different co-extraction mechanisms for this two type coals.展开更多
To reasonably utilize the coal direct liquefaction residue(DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer a...To reasonably utilize the coal direct liquefaction residue(DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer and a fixed-bed reactor. GC–MS, FTIR, and XRD were used to explore the reaction mechanisms of the various co-pyrolysis processes. Based on the TGA results, it was confirmed that the tetrahydrofuran insoluble fraction of DLR helped to catalyze the conversion reaction of lignite. Also, the addition of DLR improved the yield of tar in the fixed-bed, with altering the composition of the tar. Moreover, a kinetic analysis during the co-pyrolysis was conducted using a distributed activation energy model. The co-pyrolysis reactions showed an approximate double-Gaussian distribution.展开更多
Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specific...Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures.展开更多
Low-rank coal contains more inherent moisture, high alkali metals (Na, K, Ca), high oxygen content, and low sulfur than high-rank coal. Low-rank coal gasification usually has lower efficiency than high-rank coal, sinc...Low-rank coal contains more inherent moisture, high alkali metals (Na, K, Ca), high oxygen content, and low sulfur than high-rank coal. Low-rank coal gasification usually has lower efficiency than high-rank coal, since more energy has been used to drive out the moisture and volatile matters and vaporize them. Nevertheless, Low-rank coal comprises about half of both the current utilization and the reserves in the United States and is the largest energy resource in the United States, so it is worthwhile and important to investigate the low-rank coal gasification process. In this study, the two-stage fuel feeding scheme is investigated in a downdraft, entrained-flow, and refractory-lined reactor. Both a high-rank coal (Illinois No.6 bituminous) and a low-rank coal (South Hallsville Texas Lignite) are used for comparison under the following operating conditions: 1) low-rank coal vs. high-rank coal, 2) one-stage injection vs. two-stage injection, 3) low-rank coal with pre-drying vs. without pre-drying, and 4) dry coal feeding without steam injection vs. with steam injection at the second stage. The results show that 1) With predrying to 12% moisture, syngas produced from lignite has 538 K lower exit temperature and 18% greater Higher Heating Value (HHV) than syngas produced from Illinois #6. 2) The two-stage fuel feeding scheme results in a lower wall temperature (around 100 K) in the lower half of the gasifier than the single-stage injection scheme. 3) Without pre-drying, the high inherent moisture content in the lignite causes the syngas HHV to decrease by 27% and the mole fractions of both H2 and CO to decrease by 33%, while the water vapor content increases by 121% (by volume). The low-rank coal, without pre-drying, will take longer to finish the demoisturization and devolatilization processes, resulting in delayed combustion and gasification processes.展开更多
The centrifugal separation with gravity experiment was made for getting every pure macerals like inertinite and vitrinite,and the isothermal adsorption tests of pure mac- eral are carried out at 30,40,50,55,60,65℃,re...The centrifugal separation with gravity experiment was made for getting every pure macerals like inertinite and vitrinite,and the isothermal adsorption tests of pure mac- eral are carried out at 30,40,50,55,60,65℃,respectively,after analyzing the proximate element and maceral of coal samples,which was aimed to study the CO adsorptive capa- bility of every maceral of low rank coal at difference temperature and pressure.The results show that the adsorption isotherm of CO can be described by Langmuir equation because it belongs to the Type I adsorption isotherm at low temperature(T≤50℃),and the tem- perature effect on coal adsorption is greater than of pressure in lower temperature and pressure area;what's more,the relationship is linear between the coal adsorption quantity of CO and the pressure at high temperature(T>50℃),it can be described by Henry equation(Q=KP),which increases with pressure.Both temperature and pressure has great influence on CO adsorptive capability of low rank coals,especially the temperature's effect is so very complex that the mechanism need to study further.At the same time,the volatile matter,inertinite,oxygen-function groups and negative functional groups are high popu- larly in low rank coal samples,especially,the content of hydroxide(-OH) has great influ- ence on CO adsorption in that the inertinite has stronger effect than vitrinite on adsorptive capability of low rank coal samples,the result is same to the research on CH4 adsorption.展开更多
Coal swelling in the presence of water as well as CO2 is a well-known phenomenon, and these may affect the permeability of coal. Quantifying swelling effects is becoming an important issue to verify the suitability of...Coal swelling in the presence of water as well as CO2 is a well-known phenomenon, and these may affect the permeability of coal. Quantifying swelling effects is becoming an important issue to verify the suitability of particular coal seams for CO2-enhanced coal bed methane recovery projects. In this report, coal swelling experiments using a visualization method in the CO2 supercritical conditions were conducted on crushed coal samples. The measurement apparatus was designed specifically for the present swelling experiment using a visualization method. Crushed coal samples were used instead of block coal samples to shorten equilibrium time and to solve the problem of limited availability of core coal samples. Dry and wet coal samples were used in the experiments because there is relatively limited information about how the swelling of coal by CO2 is affected by water saturation. Moreover, some coal seams are saturated with water in initial reservoir conditions. The maximum volumetric swelling was around 3% at 10 MPa for dry samples and almost half that at the same pressure for wet samples. The wet samples showed lower volumetric swelling than dry ones because the wet coal samples were already swollen by water. Experimental results obtained for swelling were comparable with other reports. Our visualization method using crushed samples has advantages in terms of sample preparation and experimental execution compared with the other methods used to measure coal swelling using block samples.展开更多
The low rank coalbed methane (CBM) has great potential for exploration and development in China, but its exploitation level is low at present stage. The pores are the storage space of CBM, so recognizing its structura...The low rank coalbed methane (CBM) has great potential for exploration and development in China, but its exploitation level is low at present stage. The pores are the storage space of CBM, so recognizing its structural characteristics has very important practical significance for the development of CBM. The samples of No. 4 and upper No. 4 coalbed in Dafosi were selected to carry out the analysis of mercury injection test, nitrogen adsorption test and scanning electron microscopy to study the different lithotypes of the pore structure, pore throat distribution and fracture character of low rank coal reservoir. The results showed that micropore of low rank coal in Dafosi relatively developed and the pore volume of vitrain was equivalent to durain. The pore throat of durain was larger than vitrain, the connectivity was better and the fissures were more developed. The percolation capacity and reservoir performance of upper No. 4 coal was better than No. 4 coal. Generally, the potential of exploration and development of upper No. 4 coal in the study area was better than that of No. 4, and the developed area of durain was more beneficial for the development of CBM.展开更多
In this study,low-rank coal-water slurry(LCWS)was prepared using polyoxyethylene dodecylphenol ether(PDPE)and polyoxyethylene lauryl ether(PLE),respectively.A combination of experiments and simulations was used to inv...In this study,low-rank coal-water slurry(LCWS)was prepared using polyoxyethylene dodecylphenol ether(PDPE)and polyoxyethylene lauryl ether(PLE),respectively.A combination of experiments and simulations was used to investigate the pulping properties and microscopic mechanism of the LCWS samples prepared using the two agents,so as to explore the influence of benzene ring on the performance of dispersant.The results of the LCWS preparation experiments revealed that the pulp-forming performance of PDPE exceeded that of PLE.When LCWS concentration is 62%,64%,and 66%,the apparent viscosity corresponding to PDPE is 247.80,504.17,and 653.10 mPa·s,and the apparent viscosity corresponding to PLE is 548.10,1470.61,and 1549.98 mPa·s,respectively.The C_(1000)(When the apparent viscosity is 1000 mPa·s,the corresponding concentration of LCWS is defined as C_(1000))values of PDPE and PLE are 67.60%and 62.95%,respectively.In addition to the van der Waals forces and hydrogen bonds between the PDPE and/or PLE molecules and coal,the benzene rings of PDPE presentπ-πstacking effect with the aromatic rings of coal.That could facilitate and strengthen the adsorption of PDPE on coal,which would be conducive to further improving the dispersion of coal particles.The two dispersants have no significant difference in effect on the pyrolysis of LCWS.The simulation results indicated that the times for PDPE and PLE molecules to reach flat adsorption state on coal are approximately 290 and 565 ps,respectively.The self-diffusion coefficient(D)of the PDPE and PLE on coal is 3.16 x 10^(-6)and6.57×10^(-6)m~2/s,respectively,and their interaction energies with coal are 785.71 and 648.60 kcal/mol,respectively.The results of the simulation calculations demonstrated that PDPE adsorbed on coal easier than PLE,and its binding is more stable than that of PLE owing to theπ-πstacking effect,which is conducive to uniform dispersion of coal in solution.The simulation results confirmed the experimental results.展开更多
Three coal samples of different ranks were used to study the effect of coal blending on the preparation of Coal Water Slurry (CWS). The results show that by taking advantage of two kinds of coal, the coal concentratio...Three coal samples of different ranks were used to study the effect of coal blending on the preparation of Coal Water Slurry (CWS). The results show that by taking advantage of two kinds of coal, the coal concentration in slurry made from hard-to-pulp coal can be effectively improved and increased by 3%–5% generally. DLT coal (DaLiuTa coal mine) is very poor in slurryability and the stability and rheology of the resulting slurry are not very good. When the amount of easily slurried coal is more than 30%, all properties of the CWS improve and the CWS meets the requirements for use as fuel. Coalification, porosity, surface oxygenic functional groups, zeta potential and grindability have a great effect on the performance of blended coal CWS. This leads to some differences in performance between the slurry made from a single coal and slurry made from blended coal.展开更多
A subbituminous coal was oxidized with air at 150℃on a fixed bed for 4 h and xanthated with carbondisulfide in a basic solution,at 30 or 5-10℃.This xanthated coal was evaluated for the removal of Hg^(2+)and Cd^(2+)f...A subbituminous coal was oxidized with air at 150℃on a fixed bed for 4 h and xanthated with carbondisulfide in a basic solution,at 30 or 5-10℃.This xanthated coal was evaluated for the removal of Hg^(2+)and Cd^(2+)from 7,000 mg/L aqueous solutions;metal concentrations were detemmined by atomic absorption spectrometry.The ionexchange of the xanthated coal was compared against those of the original subbituminous coal,a sulfonated subbituminouscoal,activated carbon,commercial activated carbon,and commercial synthetic resin.The commercial synthetic resinshowed the highest exchange capacity(concentration factor 98%)followed by the xanthated coal(concentration factor 96%).The retention of cadmium on the sulfonated subbituminous coal was lower(exchange capacity 0.56 meq/g)thanthat of xanthated coals(1.85±0.09 meq/g).Our xanthated coal showed a better Cd^(2+)removal(8l%o against 15%)than anon preoxidized 40-h-xanthated coal,which shows that oxidation of coal increased the amount of oxygenated groups whichenhanced xanthation.展开更多
A low-mature coal (R o=0.4%, from the Manjia’er depression, Tarim Basin, China) was subjected to closed system pyrolysis, in sealed gold tubes, under isothermal temperature conditions. The carbon isotopic composition...A low-mature coal (R o=0.4%, from the Manjia’er depression, Tarim Basin, China) was subjected to closed system pyrolysis, in sealed gold tubes, under isothermal temperature conditions. The carbon isotopic compositions of the pyrolyst fractions (hydrocarbon, CO 2, CO, etc.) at two temperature points (350°C and 550°C) were measured. The results showed that δ 13C CH 4 value is generally heavier at 350°C than that at 550°C, because the high abundance of CO generated at low temperature would greatly influence δ 13C CH 4 value, and the retention time of CO in gas chromatograph is close to that of CH 4. But CO is formed through chemical reaction of the oxygen-containing functional group -C=O, e.g. lactones, ketones, ether, etc. at low temperature, while CO 2 comes mainly from decarboxylization. The carbon isotopic composition of coal gas from Lanzhou Coal Gas Works was definitely different from that of thermally pyrolysed products from coal. The δ 13C CH 4 value of coal gas was abnormally heavier than δ 13C CO. At the same time, the reversed sequence ( δ 13C 1> δ 13C 2) of δ 13C 1 and δ 13C 2 happened. The bond energy of free ions generally decides the sequence of generation of hydrocarbon fractions according to the chemical structure, whereas the stability of pyrolysate fractions and their carbon isotope fractionation are affected by the C-C bond energy.展开更多
基金financial support from the Basic Fund for the Scientific Research and Operation of Central Universities of China (No. 2009KH10
文摘A series of char samples were derived from pyrolysis of two typical low-rank coals in China (Shengli lig- nite and Shenmu bituminous coal) at low, medium and fast heating rates, respectively, to the same pyrol- ysis temperature 750℃. Then these chars were characterized by means of thermogravimetric analysis and Fourier transform infrared spectrometer with the aim to investigate the influence of heating rate in pyrolysis process on gasification reactivity and surface chemistry of them. Besides, a homogeneous model was used to quantitatively analyze the activation energy of gasification reaction. The results reveal that Shengli lignite and its derived chars behave higher gasification reactivity and have less content of oxygen functional groups than Shenmu coal and chars. Meanwhile, chars derived from Shengli lignite at 50℃/min and Shenmu coal at 200℃/min have the greatest gasification reactivity, respectively. The oxygen functional groups in Shengli lignite are easily thermo-decomposed, and they are less affected by the heating rate, while that in Shenmu coal have a significant change with the variation of heating rate. In addition, there is no good correlation between the change of oxygen functional groups and that of the gasification reactivity of the derived chars from pyrolysis at different heating rates.
基金Supported by the National Natural Science Foundation of China (50874107) the Guizhou Science and Technology Fund (Qiankehe J zi [2012]2306)+1 种基金 the Guizhou High-level Talent Special Assistant Fund (TZJF-2011-04) the Guizhou Research Laboratory Platform of Clean and Efficient Use of Coal Resources (Qianke Platform [2011] 4003)
文摘The pretreatment of low rank coal with nitric acid oxidation can promote its bio-liquefaction. However, the detailed mechanism of which remains an unresolved problem. In the present work, the characteristics of Fushun coal before and after oxidation by nitric acid were investigated combined with elemental composition, pore volume and pore size, Zeta potential, FT-IR, and 13C solid NMR spectrum analysis. The results show that the inorganic substance inlaid in coal are dissolved by ni- tric acid, which results in the decrease of coal ash content and increase of pore volume and pore size. Furthermore, there exist obvious chemical reactions between nitric acid and the functional groups of coal including aromatic ring carboxylation, side chain alkyl of aromatic ring oxidation and aromatic ring nitration. Among these reactions, some led to the increase in content of carboxyl, aliphatic carbon connected with O and humic acid carbon, while others caused the reduction of aromaticity, methyl carbon, substituted aryl carbon and side chain.
基金financially supported by the National Natural Science Foundation of China (No. 51574023)
文摘The high-value utilization of low-rank coal would allow for expanding energy sources,improving energy efficiencies,and alleviating environmental issues.In order to use low-rank coal effectively,the hypercoals(HPCs)were co-extracted from two types of low-rank coal and biomass via N-methyl-2-purrolidinone(NMP)under mild conditions.The structures of the HPCs and residues were characterized by proximate and ultimate analysis,Raman spectra,and Fourier transform infrared(FT-IR)spectra.The carbon structure changes within the raw coals and HPCs were discussed.The individual thermal dissolution of Xibu(XB)coal,Guandi(GD)coal,and the biomass demonstrated that the biomass provided the lowest thermal dissolution yield Y1 and the highest thermal soluble yield Y2 at 280℃,and the ash content of three HPCs decreased as the extraction temperature rose.Co-thermal extractions in NMP at various coal/biomass mass ratios were performed,demonstrating a positive synergic effect for Y2 in the whole coal/biomass mass ratios.The maximum value of Y2 was 52.25wt% for XB coal obtained with a XB coal/biomass of 50wt% biomass.The maximum value of Y2 was 50.77wt% for GD coal obtained with a GD coal/biomass of 1:4.The difference for the optimal coal/biomass mass ratios between XB and GD coals could be attributed to the different co-extraction mechanisms for this two type coals.
基金Supported by National High-tech Research and Development Program of China(2011AA05A2021)the National Natural Science Foundation of China(21536009)Science and Technology Plan Projects of Shaanxi Province(2017ZDCXL-GY-10-03).
文摘To reasonably utilize the coal direct liquefaction residue(DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer and a fixed-bed reactor. GC–MS, FTIR, and XRD were used to explore the reaction mechanisms of the various co-pyrolysis processes. Based on the TGA results, it was confirmed that the tetrahydrofuran insoluble fraction of DLR helped to catalyze the conversion reaction of lignite. Also, the addition of DLR improved the yield of tar in the fixed-bed, with altering the composition of the tar. Moreover, a kinetic analysis during the co-pyrolysis was conducted using a distributed activation energy model. The co-pyrolysis reactions showed an approximate double-Gaussian distribution.
基金supported by the National Natural Science Foundation of China(No.41302131)the Special Fund for Fostering Major Projects at the China University of Mining and Technology(No.2014ZDP03)the Fundamental Research Funds for the Central Universities(No.2012QNB32)
文摘Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures.
文摘Low-rank coal contains more inherent moisture, high alkali metals (Na, K, Ca), high oxygen content, and low sulfur than high-rank coal. Low-rank coal gasification usually has lower efficiency than high-rank coal, since more energy has been used to drive out the moisture and volatile matters and vaporize them. Nevertheless, Low-rank coal comprises about half of both the current utilization and the reserves in the United States and is the largest energy resource in the United States, so it is worthwhile and important to investigate the low-rank coal gasification process. In this study, the two-stage fuel feeding scheme is investigated in a downdraft, entrained-flow, and refractory-lined reactor. Both a high-rank coal (Illinois No.6 bituminous) and a low-rank coal (South Hallsville Texas Lignite) are used for comparison under the following operating conditions: 1) low-rank coal vs. high-rank coal, 2) one-stage injection vs. two-stage injection, 3) low-rank coal with pre-drying vs. without pre-drying, and 4) dry coal feeding without steam injection vs. with steam injection at the second stage. The results show that 1) With predrying to 12% moisture, syngas produced from lignite has 538 K lower exit temperature and 18% greater Higher Heating Value (HHV) than syngas produced from Illinois #6. 2) The two-stage fuel feeding scheme results in a lower wall temperature (around 100 K) in the lower half of the gasifier than the single-stage injection scheme. 3) Without pre-drying, the high inherent moisture content in the lignite causes the syngas HHV to decrease by 27% and the mole fractions of both H2 and CO to decrease by 33%, while the water vapor content increases by 121% (by volume). The low-rank coal, without pre-drying, will take longer to finish the demoisturization and devolatilization processes, resulting in delayed combustion and gasification processes.
基金the National Natural Science Foundation of China(50474080)Educational Department Foundation for Returnee
文摘The centrifugal separation with gravity experiment was made for getting every pure macerals like inertinite and vitrinite,and the isothermal adsorption tests of pure mac- eral are carried out at 30,40,50,55,60,65℃,respectively,after analyzing the proximate element and maceral of coal samples,which was aimed to study the CO adsorptive capa- bility of every maceral of low rank coal at difference temperature and pressure.The results show that the adsorption isotherm of CO can be described by Langmuir equation because it belongs to the Type I adsorption isotherm at low temperature(T≤50℃),and the tem- perature effect on coal adsorption is greater than of pressure in lower temperature and pressure area;what's more,the relationship is linear between the coal adsorption quantity of CO and the pressure at high temperature(T>50℃),it can be described by Henry equation(Q=KP),which increases with pressure.Both temperature and pressure has great influence on CO adsorptive capability of low rank coals,especially the temperature's effect is so very complex that the mechanism need to study further.At the same time,the volatile matter,inertinite,oxygen-function groups and negative functional groups are high popu- larly in low rank coal samples,especially,the content of hydroxide(-OH) has great influ- ence on CO adsorption in that the inertinite has stronger effect than vitrinite on adsorptive capability of low rank coal samples,the result is same to the research on CH4 adsorption.
文摘Coal swelling in the presence of water as well as CO2 is a well-known phenomenon, and these may affect the permeability of coal. Quantifying swelling effects is becoming an important issue to verify the suitability of particular coal seams for CO2-enhanced coal bed methane recovery projects. In this report, coal swelling experiments using a visualization method in the CO2 supercritical conditions were conducted on crushed coal samples. The measurement apparatus was designed specifically for the present swelling experiment using a visualization method. Crushed coal samples were used instead of block coal samples to shorten equilibrium time and to solve the problem of limited availability of core coal samples. Dry and wet coal samples were used in the experiments because there is relatively limited information about how the swelling of coal by CO2 is affected by water saturation. Moreover, some coal seams are saturated with water in initial reservoir conditions. The maximum volumetric swelling was around 3% at 10 MPa for dry samples and almost half that at the same pressure for wet samples. The wet samples showed lower volumetric swelling than dry ones because the wet coal samples were already swollen by water. Experimental results obtained for swelling were comparable with other reports. Our visualization method using crushed samples has advantages in terms of sample preparation and experimental execution compared with the other methods used to measure coal swelling using block samples.
文摘The low rank coalbed methane (CBM) has great potential for exploration and development in China, but its exploitation level is low at present stage. The pores are the storage space of CBM, so recognizing its structural characteristics has very important practical significance for the development of CBM. The samples of No. 4 and upper No. 4 coalbed in Dafosi were selected to carry out the analysis of mercury injection test, nitrogen adsorption test and scanning electron microscopy to study the different lithotypes of the pore structure, pore throat distribution and fracture character of low rank coal reservoir. The results showed that micropore of low rank coal in Dafosi relatively developed and the pore volume of vitrain was equivalent to durain. The pore throat of durain was larger than vitrain, the connectivity was better and the fissures were more developed. The percolation capacity and reservoir performance of upper No. 4 coal was better than No. 4 coal. Generally, the potential of exploration and development of upper No. 4 coal in the study area was better than that of No. 4, and the developed area of durain was more beneficial for the development of CBM.
基金supported by National Natural Science Foundation of China(Nos.51904174 and 52074175)Postdoctoral Science Foundation of China(No.2019M662403)+3 种基金Young Science and Technology Innovation Program of Shandong Province(No.2020KJD001)Key Research and Development Project of Shandong(No.2019GGX103035)SDUST Research Fund(No.2018TDJH101)Project of Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation Team。
文摘In this study,low-rank coal-water slurry(LCWS)was prepared using polyoxyethylene dodecylphenol ether(PDPE)and polyoxyethylene lauryl ether(PLE),respectively.A combination of experiments and simulations was used to investigate the pulping properties and microscopic mechanism of the LCWS samples prepared using the two agents,so as to explore the influence of benzene ring on the performance of dispersant.The results of the LCWS preparation experiments revealed that the pulp-forming performance of PDPE exceeded that of PLE.When LCWS concentration is 62%,64%,and 66%,the apparent viscosity corresponding to PDPE is 247.80,504.17,and 653.10 mPa·s,and the apparent viscosity corresponding to PLE is 548.10,1470.61,and 1549.98 mPa·s,respectively.The C_(1000)(When the apparent viscosity is 1000 mPa·s,the corresponding concentration of LCWS is defined as C_(1000))values of PDPE and PLE are 67.60%and 62.95%,respectively.In addition to the van der Waals forces and hydrogen bonds between the PDPE and/or PLE molecules and coal,the benzene rings of PDPE presentπ-πstacking effect with the aromatic rings of coal.That could facilitate and strengthen the adsorption of PDPE on coal,which would be conducive to further improving the dispersion of coal particles.The two dispersants have no significant difference in effect on the pyrolysis of LCWS.The simulation results indicated that the times for PDPE and PLE molecules to reach flat adsorption state on coal are approximately 290 and 565 ps,respectively.The self-diffusion coefficient(D)of the PDPE and PLE on coal is 3.16 x 10^(-6)and6.57×10^(-6)m~2/s,respectively,and their interaction energies with coal are 785.71 and 648.60 kcal/mol,respectively.The results of the simulation calculations demonstrated that PDPE adsorbed on coal easier than PLE,and its binding is more stable than that of PLE owing to theπ-πstacking effect,which is conducive to uniform dispersion of coal in solution.The simulation results confirmed the experimental results.
基金Projects 20060290506 supported by the Doctoral Foundation of the Chinese Education Ministry2005B013 by the Science and TechnologyFoundation of China University of Mining & Technology
文摘Three coal samples of different ranks were used to study the effect of coal blending on the preparation of Coal Water Slurry (CWS). The results show that by taking advantage of two kinds of coal, the coal concentration in slurry made from hard-to-pulp coal can be effectively improved and increased by 3%–5% generally. DLT coal (DaLiuTa coal mine) is very poor in slurryability and the stability and rheology of the resulting slurry are not very good. When the amount of easily slurried coal is more than 30%, all properties of the CWS improve and the CWS meets the requirements for use as fuel. Coalification, porosity, surface oxygenic functional groups, zeta potential and grindability have a great effect on the performance of blended coal CWS. This leads to some differences in performance between the slurry made from a single coal and slurry made from blended coal.
文摘A subbituminous coal was oxidized with air at 150℃on a fixed bed for 4 h and xanthated with carbondisulfide in a basic solution,at 30 or 5-10℃.This xanthated coal was evaluated for the removal of Hg^(2+)and Cd^(2+)from 7,000 mg/L aqueous solutions;metal concentrations were detemmined by atomic absorption spectrometry.The ionexchange of the xanthated coal was compared against those of the original subbituminous coal,a sulfonated subbituminouscoal,activated carbon,commercial activated carbon,and commercial synthetic resin.The commercial synthetic resinshowed the highest exchange capacity(concentration factor 98%)followed by the xanthated coal(concentration factor 96%).The retention of cadmium on the sulfonated subbituminous coal was lower(exchange capacity 0.56 meq/g)thanthat of xanthated coals(1.85±0.09 meq/g).Our xanthated coal showed a better Cd^(2+)removal(8l%o against 15%)than anon preoxidized 40-h-xanthated coal,which shows that oxidation of coal increased the amount of oxygenated groups whichenhanced xanthation.
文摘A low-mature coal (R o=0.4%, from the Manjia’er depression, Tarim Basin, China) was subjected to closed system pyrolysis, in sealed gold tubes, under isothermal temperature conditions. The carbon isotopic compositions of the pyrolyst fractions (hydrocarbon, CO 2, CO, etc.) at two temperature points (350°C and 550°C) were measured. The results showed that δ 13C CH 4 value is generally heavier at 350°C than that at 550°C, because the high abundance of CO generated at low temperature would greatly influence δ 13C CH 4 value, and the retention time of CO in gas chromatograph is close to that of CH 4. But CO is formed through chemical reaction of the oxygen-containing functional group -C=O, e.g. lactones, ketones, ether, etc. at low temperature, while CO 2 comes mainly from decarboxylization. The carbon isotopic composition of coal gas from Lanzhou Coal Gas Works was definitely different from that of thermally pyrolysed products from coal. The δ 13C CH 4 value of coal gas was abnormally heavier than δ 13C CO. At the same time, the reversed sequence ( δ 13C 1> δ 13C 2) of δ 13C 1 and δ 13C 2 happened. The bond energy of free ions generally decides the sequence of generation of hydrocarbon fractions according to the chemical structure, whereas the stability of pyrolysate fractions and their carbon isotope fractionation are affected by the C-C bond energy.