期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sound absorption performance of various nickel foam-base multi-layer structures in range of low frequency 被引量:3
1
作者 Wei CHENG Cui-yun DUAN +1 位作者 Pei-sheng LIU Miao LU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第9期1989-1995,共7页
Commercial3D reticular nickel foam and its composite structure were investigated on the sound absorption at200-2000Hz.The absorption performance of foam plates1?5layers(1-layer thickness:2.3mm;porosity:89%;average por... Commercial3D reticular nickel foam and its composite structure were investigated on the sound absorption at200-2000Hz.The absorption performance of foam plates1?5layers(1-layer thickness:2.3mm;porosity:89%;average pore-diameter:0.57mm)was found to be poor,and could be improved by adding backed cavum or front perforated thin sheet.The absorption coefficient could reach about0.4at1000-1600Hz for the composite structure of5-layer foam with a backed5mm-thick cavum,and even0.68at about1000Hz for that of2-layer foam with the same cavum and a perforated plate closely in front of the foam. 展开更多
关键词 reticular metal foam reticular nickel foam composite structure for sound absorption low frequency sound absorption
下载PDF
Sound absorption characteristic of micro-helix metamaterial by 3D printing 被引量:1
2
作者 Nansha Gao Hong Hou 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第2期63-67,共5页
We present the design of micro-helix metamaterial supporting high sound absorption characteristic by 3D printing. The sample structure which is fabricated out of polylactide (PLA) material, many micro-helix are arra... We present the design of micro-helix metamaterial supporting high sound absorption characteristic by 3D printing. The sample structure which is fabricated out of polylactide (PLA) material, many micro-helix are arranged by periodic arrays on XY plane. Experiment measurement results show that different geometrical dimensions of helix vestibule and cavity depth have a great effect on sound absorption coefficient. Physical mechanism depends on the friction and viscosity between the air and the helix vestibule. This work shows great potential of micro-structure metamaterial in noise control applications require light weight and large rigid of sound absorption. 展开更多
关键词 low frequency sound absorption Micro-helix metamaterial 3D printing Helix vestibule Cavity depth
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部