We propose a novel scheme, called on-line cache resizing (OCR), to dynamically resize the cache and meet the size requirement of each application. At each periodic interval, the scheme gathers the cache hit-miss sta...We propose a novel scheme, called on-line cache resizing (OCR), to dynamically resize the cache and meet the size requirement of each application. At each periodic interval, the scheme gathers the cache hit-miss statistics at runtime using an extra tag array. These executing statistics serve as inputs to an analytical model of cache energy. The scheme uses energy as a primary metric to dynamically increase/decrease the number of active cache ways for the next interval. The scheme minimizes the active cache size to save energy with minimal performance loss. The simulation with SPEC 2000 benchmarks shows that OCR results in an average of 38.4% energy saving compared with fixed-size caches, with only 2.0% performance loss.展开更多
In the era of Internet of Things, the battery life of edge devices must be extended for sensing connection to the Internet. We aim to reduce the power consumption of the microprocessor embedded in such devices by usin...In the era of Internet of Things, the battery life of edge devices must be extended for sensing connection to the Internet. We aim to reduce the power consumption of the microprocessor embedded in such devices by using a novel dynamically reconfigurable accelerator. Conventional microprocessors consume a large amount of power for memory access, in registers, and for the control of the processor itself rather than computation;this decreases the energy efficiency. Dynamically reconfigurable accelerators reduce such redundant power by computing in parallel on reconfigurable switches and processing element arrays (often consisting of an arithmetic logic unit (ALU) and registers). We propose a novel dynamically reconfigurable accelerator “DYNaSTA” composed of a dynamically reconfigurable data path and static ALU arrays. The static ALU arrays process instructions in parallel without registers and improve energy efficiency. The dynamically reconfigurable data path includes registers and many switches dynamically reconfigured to resolve operand dependencies between instructions mapped on the static ALU array, and forwards appropriate operands to the static ALU array. Therefore, the DYNaSTA accelerator has more flexibility while improving the energy efficiency compared with the conventional dynamically reconfigurable accelerators. We simulated the power consumption of the proposed DYNaSTA accelerator and measured the fabricated chip. As a result, the power consumption was reduced by 69% to 86%, and the energy efficiency improved 4.5 to 13 times compared to a general RISC microprocessor.展开更多
A novel dual-edge implicit pulse-triggered flip-flop with an embedded clock-gating scheme(DIFF-CGS) is proposed, which employs a transmission-gate-logic(TGL) based clock-gating scheme in the pulse generation stage. Th...A novel dual-edge implicit pulse-triggered flip-flop with an embedded clock-gating scheme(DIFF-CGS) is proposed, which employs a transmission-gate-logic(TGL) based clock-gating scheme in the pulse generation stage. This scheme conditionally disables the inverter chain when the input data are kept unchanged, so redundant transitions of delayed clock signals and internal nodes of the latch are all eliminated, leading to low power efficiency. Based on SMIC 65 nm technology, extensive post-layout simulation results show that the proposed DIFF-CGS gains an improvement of 41.39% to 56.21% in terms of power consumption, compared with its counterparts at 10% data-switching activity. Also, full-swing operations in both implicit pulse generation and the static latch improve the robustness of the design. Thus, DIFF-CGS is suitable for low-power applications in very-large-scale integration(VLSI) designs with low data-switching activities.展开更多
灌区墒情实时监测是现代灌区灌溉管理中的必要部分和基础工作。该文设计了一种利用微功耗处理器的墒情监测仪,仅用2节1号干电池供电,结合GPRS(general packet radio service)数据传输至网络服务器处理分析,从而实现了区域分布式的墒情...灌区墒情实时监测是现代灌区灌溉管理中的必要部分和基础工作。该文设计了一种利用微功耗处理器的墒情监测仪,仅用2节1号干电池供电,结合GPRS(general packet radio service)数据传输至网络服务器处理分析,从而实现了区域分布式的墒情监测。本系统设计装载4层土壤水分/温度传感器和1层水势传感器,根据灌溉管理需要布设在作物根区不同深度;利用微处理器和设计电路进行土壤墒情等参数的采集、存储、传输和控制,每小时采集1次数据、每日将数据发送至网络服务器。通过在灌区不同区域典型作物生育期内实际运行1 a结果表明,该系统采用干电池或锂离子电池供电,体积小而便于在田间布设,不影响农田耕作,方便经济;监测数据能够及时传送至网络服务器以进行结果处理和灌溉管理。该文同时也对系统特点进行了总结,并指出对该系统进一步改进和研发方向。展开更多
基金The High Technology Research and Development Program of China (No.2006AA01Z226)the Natural Science Foundation of Hubei (No.2007ABD002)the Ministry of Education-INTEL Information Technology Foundation (No.MOE-INTEL-08-05)
文摘We propose a novel scheme, called on-line cache resizing (OCR), to dynamically resize the cache and meet the size requirement of each application. At each periodic interval, the scheme gathers the cache hit-miss statistics at runtime using an extra tag array. These executing statistics serve as inputs to an analytical model of cache energy. The scheme uses energy as a primary metric to dynamically increase/decrease the number of active cache ways for the next interval. The scheme minimizes the active cache size to save energy with minimal performance loss. The simulation with SPEC 2000 benchmarks shows that OCR results in an average of 38.4% energy saving compared with fixed-size caches, with only 2.0% performance loss.
文摘In the era of Internet of Things, the battery life of edge devices must be extended for sensing connection to the Internet. We aim to reduce the power consumption of the microprocessor embedded in such devices by using a novel dynamically reconfigurable accelerator. Conventional microprocessors consume a large amount of power for memory access, in registers, and for the control of the processor itself rather than computation;this decreases the energy efficiency. Dynamically reconfigurable accelerators reduce such redundant power by computing in parallel on reconfigurable switches and processing element arrays (often consisting of an arithmetic logic unit (ALU) and registers). We propose a novel dynamically reconfigurable accelerator “DYNaSTA” composed of a dynamically reconfigurable data path and static ALU arrays. The static ALU arrays process instructions in parallel without registers and improve energy efficiency. The dynamically reconfigurable data path includes registers and many switches dynamically reconfigured to resolve operand dependencies between instructions mapped on the static ALU array, and forwards appropriate operands to the static ALU array. Therefore, the DYNaSTA accelerator has more flexibility while improving the energy efficiency compared with the conventional dynamically reconfigurable accelerators. We simulated the power consumption of the proposed DYNaSTA accelerator and measured the fabricated chip. As a result, the power consumption was reduced by 69% to 86%, and the energy efficiency improved 4.5 to 13 times compared to a general RISC microprocessor.
基金Project supported by the National Natural Science Foundation of China(Nos.61071062 and 61471314)the Zhejiang Provincial Natura l Science Foundation of China(No.LY13F010001)
文摘A novel dual-edge implicit pulse-triggered flip-flop with an embedded clock-gating scheme(DIFF-CGS) is proposed, which employs a transmission-gate-logic(TGL) based clock-gating scheme in the pulse generation stage. This scheme conditionally disables the inverter chain when the input data are kept unchanged, so redundant transitions of delayed clock signals and internal nodes of the latch are all eliminated, leading to low power efficiency. Based on SMIC 65 nm technology, extensive post-layout simulation results show that the proposed DIFF-CGS gains an improvement of 41.39% to 56.21% in terms of power consumption, compared with its counterparts at 10% data-switching activity. Also, full-swing operations in both implicit pulse generation and the static latch improve the robustness of the design. Thus, DIFF-CGS is suitable for low-power applications in very-large-scale integration(VLSI) designs with low data-switching activities.
文摘灌区墒情实时监测是现代灌区灌溉管理中的必要部分和基础工作。该文设计了一种利用微功耗处理器的墒情监测仪,仅用2节1号干电池供电,结合GPRS(general packet radio service)数据传输至网络服务器处理分析,从而实现了区域分布式的墒情监测。本系统设计装载4层土壤水分/温度传感器和1层水势传感器,根据灌溉管理需要布设在作物根区不同深度;利用微处理器和设计电路进行土壤墒情等参数的采集、存储、传输和控制,每小时采集1次数据、每日将数据发送至网络服务器。通过在灌区不同区域典型作物生育期内实际运行1 a结果表明,该系统采用干电池或锂离子电池供电,体积小而便于在田间布设,不影响农田耕作,方便经济;监测数据能够及时传送至网络服务器以进行结果处理和灌溉管理。该文同时也对系统特点进行了总结,并指出对该系统进一步改进和研发方向。