Recently, the matrix factorization model attracts increasing attentions in handling large-scale rank minimization problems, which is essentially a nonconvex minimization problem. Specifically, it is a quadratic least ...Recently, the matrix factorization model attracts increasing attentions in handling large-scale rank minimization problems, which is essentially a nonconvex minimization problem. Specifically, it is a quadratic least squares problem and consequently a quartic polynomial optimization problem. In this paper, we introduce a concept of the SNIG ("Second-order Necessary optimality Implies Global optimality") condition which stands for the property that any second-order stationary point of the matrix factorization model must be a global minimizer. Some scenarios under which the SNIG condition holds are presented. Furthermore, we illustrate by an example when the SNIG condition may fail.展开更多
文摘Recently, the matrix factorization model attracts increasing attentions in handling large-scale rank minimization problems, which is essentially a nonconvex minimization problem. Specifically, it is a quadratic least squares problem and consequently a quartic polynomial optimization problem. In this paper, we introduce a concept of the SNIG ("Second-order Necessary optimality Implies Global optimality") condition which stands for the property that any second-order stationary point of the matrix factorization model must be a global minimizer. Some scenarios under which the SNIG condition holds are presented. Furthermore, we illustrate by an example when the SNIG condition may fail.