Human lymphocytes pre-exposed to 10 mGy or 50 mGy of X-rays become less sensitive to subsequent large dose irradiation, exhibited lower rate of chromosome aberration than expected. This adaptive response could be inhi...Human lymphocytes pre-exposed to 10 mGy or 50 mGy of X-rays become less sensitive to subsequent large dose irradiation, exhibited lower rate of chromosome aberration than expected. This adaptive response could be inhibited by cycloheximide, a protein synthesis inhibitor for successive 2 h period ranging from 0.5h before to 4h after the low dose exposure, indicating that the adaptive response was directly related with the protein synthesis.展开更多
Zinc deficiency is one of the most widespreadmicro-nutritional disorder for rice. To solve the problem, screening Zn-efficient cultivars isan available method and understanding geno-
The changes in external K^+ concentration affect plant root growth. However, the molecular mechanism for perceiving a K^+ signal to modulate root growth remains unknown. It is hypothesized that the K^+ channel AKTI...The changes in external K^+ concentration affect plant root growth. However, the molecular mechanism for perceiving a K^+ signal to modulate root growth remains unknown. It is hypothesized that the K^+ channel AKTI is involved in low K^+ sensing in the Arabidopsis root and subsequent regulation of root growth. Along with the decline of external K^+ concentration, the primary root growth of wild-type plants was gradually inhibited. However, the primary root of the akt1 mutant could still grow under low K^+(LK) conditions. Application of NAA inhibited akt1 root growth, but promoted wild-type root growth under LK conditions. By using the ProDR5:GFP and ProPIN1:PIN1-GFP lines, we found that LK treatment reduced auxin accumulation in wild-type root tips by degrading PIN1 proteins, which did not occur in the akt1 mutant. The LK-induced PIN1 degradation may be due to the inhibition of vesicle trafficking of PIN1 proteins. In conclusion, our findings indicate that AKT1 is required for an Arabidopsis response to changes in external K^+, and subsequent regulation of K^+-dependent root growth by modulating PINt degradation and auxin redistribution in the root.展开更多
The low frequency vibration response of a specimen in acoustic fatigue tests depends not only on the dynamic characteristics and the boundary conditions of the specimen itself, but also on the test unit which couples ...The low frequency vibration response of a specimen in acoustic fatigue tests depends not only on the dynamic characteristics and the boundary conditions of the specimen itself, but also on the test unit which couples the specimen to a given sound field. Further, the latter can even be dominant instead the former in some circumstances. This fact is shown in the paper by using the experimental results and the theoretical analysis of the acoustic-induced vibration of a boundary clamped rectangular thin plate. In analysing the systems of acoustic fatigue test, an approach of electro-mechano-acoustical analogous circuit is used. The application of the approach can give an estimation of the effects on the low frequency vibration modes of various parameters in a system quantitatively. This supplies a theoretical basis and a means for the rational layout of acoustic fatigue tests.展开更多
The study investigated the improvement of slowly digestible starch fraction of cardaba banana via octenyl succinic anhydride(OSA)modification process.A nonlinear(Response surface methodology[RSM]and artificial neural ...The study investigated the improvement of slowly digestible starch fraction of cardaba banana via octenyl succinic anhydride(OSA)modification process.A nonlinear(Response surface methodology[RSM]and artificial neural network[ANN])and linear(partial least square[PLS])modelswere employed and their predictabilitywas compared.The result revealed that all the modelling techniques were accurate in predicting the experimental process.The optimized RSM values for the production of slowly digestible starch(SDS)fraction were OSA concentration of 4%,reaction time of 47.49 min,and pH of 10 with a predicted SDS value of 44.64%.Among the modelling techniques,ANNwas adjudged as the predictivemodel for improving the SDS yield.The regression coefficient coupled with the variable important in the projection(VIP)values of the PLS model indicated that the OSA concentrationwas themost important factors responsible for high SDS yield.Finally,a structural comparison of the optimized starch against native starch revealed the formation of high ordered crystalline structure of the starch due to the impregnation of the modifying agent to the hydroxyl group of the cardaba banana starch.展开更多
Arterial vasospasm after microsurgery can cause severe obstruction of blood flow manifested as low tissue temperature,leading to tissue necrosis.The timely discovery and synchronized treatment become pivotal.In this s...Arterial vasospasm after microsurgery can cause severe obstruction of blood flow manifested as low tissue temperature,leading to tissue necrosis.The timely discovery and synchronized treatment become pivotal.In this study,a reversible,intelligent,responsive thermosensitive hydrogel system is constructed employing both the gel–sol transition and the sol–gel transition.The“reversible thermosensitive(RTS)”hydrogel loaded with verapamil hydrochloride is designed to dynamically and continuously regulate the extravascular microenvi-ronment by inhibiting extracellular calcium influx.After accurate implantation and following in situ gelation,the RTS hydrogel reverses to the sol state causing massive drug release to inhibit vasospasm when the tissue tem-perature drops to the predetermined transition temperature.Subsequent restoration of the blood supply allevi-ates further tissue injury.Before the temperature drops,the RTS hydrogel maintains the gel state as a sustained-release reservoir to prevent vasospasm.The inhibition of calcium influx and vasospasm in vitro and in vivo is demonstrated using vascular smooth muscle cells,mice mesenteric arterial rings,and vascular ultrasonic Doppler detection.Subsequent animal experiments demonstrate that RTS hydrogel can promote tissue survival and alleviate tissue injury responding to temperature change.Therefore,this RTS hydrogel holds therapeutic po-tential for diseases requiring timely detection of temperature change.展开更多
文摘Human lymphocytes pre-exposed to 10 mGy or 50 mGy of X-rays become less sensitive to subsequent large dose irradiation, exhibited lower rate of chromosome aberration than expected. This adaptive response could be inhibited by cycloheximide, a protein synthesis inhibitor for successive 2 h period ranging from 0.5h before to 4h after the low dose exposure, indicating that the adaptive response was directly related with the protein synthesis.
文摘Zinc deficiency is one of the most widespreadmicro-nutritional disorder for rice. To solve the problem, screening Zn-efficient cultivars isan available method and understanding geno-
基金supported by grants from the National Natural Science Foundation of China(31570243No.31622008No.31421062)
文摘The changes in external K^+ concentration affect plant root growth. However, the molecular mechanism for perceiving a K^+ signal to modulate root growth remains unknown. It is hypothesized that the K^+ channel AKTI is involved in low K^+ sensing in the Arabidopsis root and subsequent regulation of root growth. Along with the decline of external K^+ concentration, the primary root growth of wild-type plants was gradually inhibited. However, the primary root of the akt1 mutant could still grow under low K^+(LK) conditions. Application of NAA inhibited akt1 root growth, but promoted wild-type root growth under LK conditions. By using the ProDR5:GFP and ProPIN1:PIN1-GFP lines, we found that LK treatment reduced auxin accumulation in wild-type root tips by degrading PIN1 proteins, which did not occur in the akt1 mutant. The LK-induced PIN1 degradation may be due to the inhibition of vesicle trafficking of PIN1 proteins. In conclusion, our findings indicate that AKT1 is required for an Arabidopsis response to changes in external K^+, and subsequent regulation of K^+-dependent root growth by modulating PINt degradation and auxin redistribution in the root.
文摘The low frequency vibration response of a specimen in acoustic fatigue tests depends not only on the dynamic characteristics and the boundary conditions of the specimen itself, but also on the test unit which couples the specimen to a given sound field. Further, the latter can even be dominant instead the former in some circumstances. This fact is shown in the paper by using the experimental results and the theoretical analysis of the acoustic-induced vibration of a boundary clamped rectangular thin plate. In analysing the systems of acoustic fatigue test, an approach of electro-mechano-acoustical analogous circuit is used. The application of the approach can give an estimation of the effects on the low frequency vibration modes of various parameters in a system quantitatively. This supplies a theoretical basis and a means for the rational layout of acoustic fatigue tests.
文摘The study investigated the improvement of slowly digestible starch fraction of cardaba banana via octenyl succinic anhydride(OSA)modification process.A nonlinear(Response surface methodology[RSM]and artificial neural network[ANN])and linear(partial least square[PLS])modelswere employed and their predictabilitywas compared.The result revealed that all the modelling techniques were accurate in predicting the experimental process.The optimized RSM values for the production of slowly digestible starch(SDS)fraction were OSA concentration of 4%,reaction time of 47.49 min,and pH of 10 with a predicted SDS value of 44.64%.Among the modelling techniques,ANNwas adjudged as the predictivemodel for improving the SDS yield.The regression coefficient coupled with the variable important in the projection(VIP)values of the PLS model indicated that the OSA concentrationwas themost important factors responsible for high SDS yield.Finally,a structural comparison of the optimized starch against native starch revealed the formation of high ordered crystalline structure of the starch due to the impregnation of the modifying agent to the hydroxyl group of the cardaba banana starch.
基金National Key Research and Development Program of China(2020YFA0908200)National Natural Science Foundation of China(81772099,81801928 and 52103173)+3 种基金China Postdoctoral Science Foundation(2021M692105)Shanghai Municipal Health Commission(20204Y0354)Shanghai Municipal Key Clinical Specialty(shslczdzk00901)Young Physicians Innovation Team Project of the Ninth People’s Hospital of Shanghai Jiao Tong University School of Medicine(QC201902).
文摘Arterial vasospasm after microsurgery can cause severe obstruction of blood flow manifested as low tissue temperature,leading to tissue necrosis.The timely discovery and synchronized treatment become pivotal.In this study,a reversible,intelligent,responsive thermosensitive hydrogel system is constructed employing both the gel–sol transition and the sol–gel transition.The“reversible thermosensitive(RTS)”hydrogel loaded with verapamil hydrochloride is designed to dynamically and continuously regulate the extravascular microenvi-ronment by inhibiting extracellular calcium influx.After accurate implantation and following in situ gelation,the RTS hydrogel reverses to the sol state causing massive drug release to inhibit vasospasm when the tissue tem-perature drops to the predetermined transition temperature.Subsequent restoration of the blood supply allevi-ates further tissue injury.Before the temperature drops,the RTS hydrogel maintains the gel state as a sustained-release reservoir to prevent vasospasm.The inhibition of calcium influx and vasospasm in vitro and in vivo is demonstrated using vascular smooth muscle cells,mice mesenteric arterial rings,and vascular ultrasonic Doppler detection.Subsequent animal experiments demonstrate that RTS hydrogel can promote tissue survival and alleviate tissue injury responding to temperature change.Therefore,this RTS hydrogel holds therapeutic po-tential for diseases requiring timely detection of temperature change.