期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Doping effect of cations(Zr^(4+),Al^(3+),and Si^(4+)) on MnO_x/CeO_2 nano-rod catalyst for NH_3-SCR reaction at low temperature 被引量:7
1
作者 Xiaojiang Yao Jun Cao +4 位作者 Li Chen Keke Kang Yang Chen Mi Tian Fumo Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期733-743,共11页
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods... Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst. 展开更多
关键词 MnOx/CeO2 nano‐rod catalyst Doping effect Oxygen vacancy Surface acidity lowtemperature NH3‐SCR reaction
下载PDF
Salt-assisted Low Temperature Solid State Synthesis of High Surface Area CoFe_2O_4 Nanoparticles 被引量:1
2
作者 Runhua Qin Fengsheng Li +1 位作者 Wei Jiang Li Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第1期69-72,共4页
A novel salt-assisted low temperature solid state method using CoCl2.6H2O, FeCl3.6H2O and NaOH as precursor and using NaCI as a dispersant to synthesize high surface area CoFe2O4 nanoparticles, has been investigated. ... A novel salt-assisted low temperature solid state method using CoCl2.6H2O, FeCl3.6H2O and NaOH as precursor and using NaCI as a dispersant to synthesize high surface area CoFe2O4 nanoparticles, has been investigated. The effects of the molar ratio of added salt and calcination temperature on the characteristics of the products were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Brunauer, Emmett and Teller (BET) surface area analysis. Results showed that the introduction of leachable inert inorganic salt as a hard agglomeration inhibitor in the mixture precursor led to the formation of high dispersive CoFe2O4 nanoparticles; and the increase in specific surface area from 28.28 to 73.97 m^2/g, and the saturation magnetization is 84.6 emu/g. 展开更多
关键词 low temperature solid state reaction Salt-assisted Cobalt ferrite NANOPARTICLES
下载PDF
Preparation and gas sensing properties for acetone of amorphous Ag modified NiFe_2O_4 sensor 被引量:1
3
作者 焦万丽 张磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1127-1132,共6页
Nickel ferrite nano-powders were prepared by microwave radiating low-temperature solid-state reaction method, and then modified with Ag by dipping method. The crystal structure and morphology of the samples were chara... Nickel ferrite nano-powders were prepared by microwave radiating low-temperature solid-state reaction method, and then modified with Ag by dipping method. The crystal structure and morphology of the samples were characterized by means of X-ray diffraction(XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The gas sensing properties of the samples were also investigated. The results reveal that the Ag, as amorphous structure, can efficiently prevent the reuniting and growing-up of nanosized NiFe2O4 grains, and 1.5% Ag modified NiFe2O4 sensor has a better sensitivity, up to 43, for acetone gas than 1.5%Ag mixed NiFe2O4 sensor prepared by low-temperature solid-state reaction, at an optimal working voltage of 4.5 V. The quick response time (1 s) and fast recovery time (~10 s) are the main characteristics of this sensor. 展开更多
关键词 nickel ferrite low temperature solid state reaction dipping method SILVER ACETONE
下载PDF
Yttrium aluminum garnet (Y_3A_(l5)O_(12)) nanopowders synthesized by the chemical method 被引量:6
4
作者 ZHANGHuasha SUChunhui +2 位作者 HANHui HOUZhaoxia WANGGuangzhao 《Rare Metals》 SCIE EI CAS CSCD 2005年第2期166-169,184,共5页
The homogeneously dispersed, less agglomerated YAG nanopowders are synthesized by the citrate-gel method followed by low-temperature self-propagating combustion reaction, using Y2O3, Al(NO3)3?9H2O and citric acid as s... The homogeneously dispersed, less agglomerated YAG nanopowders are synthesized by the citrate-gel method followed by low-temperature self-propagating combustion reaction, using Y2O3, Al(NO3)3?9H2O and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and the hard ag-glomerates brought by the chemical precipitation method. The powders are characterized by TG-DTA, XRD, FT-IR and TEM respectively. The experiments show that the forming temperature of YAG crystal phase is 850°C and the pseudo-YAG crystalline appears during the calcination and transforms to pure YAG at 1050°C. The powders with sizes less than 50 nm are observed by TEM micrography, which is consistent with the result calculated by Scherrer's formula. The powders consist of single grains. 展开更多
关键词 inorganic materials yttrium aluminum garnet nanopowders citrate-gel method low temperature self-propagating combustion reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部