Laser-based displays have attracted much attention owing to large-size screen and full-color gamut compared with other displays such as liquid crystal display and light emitting diode. However, there exists a phenomen...Laser-based displays have attracted much attention owing to large-size screen and full-color gamut compared with other displays such as liquid crystal display and light emitting diode. However, there exists a phenomenon, speckle, limits the applications of laser display because of the high coherence of laser. In this work, we developed an electrically injected 6xx nm dual-emitter laser which combines the low-spatial coherence with the high-power. The output power of the dual-emitter laser exceeds 500 mW under 20?C pulse operation. The single emitter consists of D-shaped section used to obtain more independent spatial modes thus reduces coherence and a stripe area to obtain the high power. The radius of the D-shaped cavity is 500 μm and the length of stripe is 1000 μm. We used the standard photolithography and inductively coupled plasma (ICP) process to fabricate the device. The speckle contrast was measured to be 5%. It exhibits a great potential of reducing speckle from the source directly for laser display.展开更多
文摘Laser-based displays have attracted much attention owing to large-size screen and full-color gamut compared with other displays such as liquid crystal display and light emitting diode. However, there exists a phenomenon, speckle, limits the applications of laser display because of the high coherence of laser. In this work, we developed an electrically injected 6xx nm dual-emitter laser which combines the low-spatial coherence with the high-power. The output power of the dual-emitter laser exceeds 500 mW under 20?C pulse operation. The single emitter consists of D-shaped section used to obtain more independent spatial modes thus reduces coherence and a stripe area to obtain the high power. The radius of the D-shaped cavity is 500 μm and the length of stripe is 1000 μm. We used the standard photolithography and inductively coupled plasma (ICP) process to fabricate the device. The speckle contrast was measured to be 5%. It exhibits a great potential of reducing speckle from the source directly for laser display.
文摘由于低照度图像具有对比度低、细节丢失严重、噪声大等缺点,现有的目标检测算法对低照度图像的检测效果不理想.为此,本文提出一种结合空间感知注意力机制和多尺度特征融合(Spatial-aware Attention Mechanism and Multi-Scale Feature Fusion,SAM-MSFF)的低照度目标检测方法 .该方法首先通过多尺度交互内存金字塔融合多尺度特征,增强低照度图像特征中的有效信息,并设置内存向量存储样本的特征,捕获样本之间的潜在关联性;然后,引入空间感知注意力机制获取特征在空间域的长距离上下文信息和局部信息,从而增强低照度图像中的目标特征,抑制背景信息和噪声的干扰;最后,利用多感受野增强模块扩张特征的感受野,对具有不同感受野的特征进行分组重加权计算,使检测网络根据输入的多尺度信息自适应地调整感受野的大小.在ExDark数据集上进行实验,本文方法的平均精度(mean Average Precision,mAP)达到77.04%,比现有的主流目标检测方法提高2.6%~14.34%.