In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and trans...In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection.展开更多
In order to improve the quality of low-dose computational tomography (CT)images, the paper proposes an improved image denoising approach based on WGAN-gpwith Wasserstein distance. For improving the training and the co...In order to improve the quality of low-dose computational tomography (CT)images, the paper proposes an improved image denoising approach based on WGAN-gpwith Wasserstein distance. For improving the training and the convergence efficiency, thegiven method introduces the gradient penalty term to WGAN network. The novelperceptual loss is introduced to make the texture information of the low-dose imagessensitive to the diagnostician eye. The experimental results show that compared with thestate-of-art methods, the time complexity is reduced, and the visual quality of low-doseCT images is significantly improved.展开更多
Lung nodule classification based on low-dose computed tomography(LDCT)images has attracted major attention thanks to the reduced radiation dose and its potential for early diagnosis of lung cancer from LDCT-based lung...Lung nodule classification based on low-dose computed tomography(LDCT)images has attracted major attention thanks to the reduced radiation dose and its potential for early diagnosis of lung cancer from LDCT-based lung cancer screening.However,LDCT images suffer from severe noise,largely influencing the performance of lung nodule classification.Current methods combining denoising and classification tasks typically require the corresponding normal-dose CT(NDCT)images as the supervision for the denoising task,which is impractical in the context of clinical diagnosis using LDCT.To jointly train these two tasks in a unified framework without the NDCT images,this paper introduces a novel self-supervised method,termed strided Noise2Neighbors or SN2N,for blind medical image denoising and lung nodule classification,where the supervision is generated from noisy input images.More specifically,the proposed SN2N can construct the supervision infor-mation from its neighbors for LDCT denoising,which does not need NDCT images anymore.The proposed SN2N method enables joint training of LDCT denoising and lung nodule classification tasks by using self-supervised loss for denoising and cross-entropy loss for classification.Extensively experimental results on the Mayo LDCT dataset demonstrate that our SN2N achieves competitive performance compared with the supervised learning methods that have paired NDCT images as supervision.Moreover,our results on the LIDC-IDRI dataset show that the joint training of LDCT denoising and lung nodule classification significantly improves the performance of LDCT-based lung nodule classification.展开更多
Low-dose computed tomography(LDCT)denoising is an indispensable procedure in the medical imaging field,which not only improves image quality,but can mitigate the potential hazard to patients caused by routine doses.De...Low-dose computed tomography(LDCT)denoising is an indispensable procedure in the medical imaging field,which not only improves image quality,but can mitigate the potential hazard to patients caused by routine doses.Despite the improvement in performance of the cycle-consistent generative adversarial network(CycleGAN)due to the well-paired CT images shortage,there is still a need to further reduce image noise while retaining detailed features.Inspired by the residual encoder–decoder convolutional neural network(RED-CNN)and U-Net,we propose a novel unsupervised model using CycleGAN for LDCT imaging,which injects a two-sided network into selective kernel networks(SK-NET)to adaptively select features,and uses the patchGAN discriminator to generate CT images with more detail maintenance,aided by added perceptual loss.Based on patch-based training,the experimental results demonstrated that the proposed SKFCycleGAN outperforms competing methods in both a clinical dataset and the Mayo dataset.The main advantages of our method lie in noise suppression and edge preservation.展开更多
Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are exposed.Increasing the radiation dose to get a be...Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are exposed.Increasing the radiation dose to get a better image may lead to the development of genetic disorders and cancer in the patients;on the other hand,decreasing it by using a Low-Dose CT(LDCT)image may cause more noise and increased artifacts,which can compromise the diagnosis.So,image reconstruction from LDCT image data is necessary to improve radiologists’judgment and confidence.This study proposed three novel models for denoising LDCT images based on Wasserstein Generative Adversarial Network(WGAN).They were incorporated with different loss functions,including Visual Geometry Group(VGG),Structural Similarity Loss(SSIM),and Structurally Sensitive Loss(SSL),to reduce noise and preserve important information on LDCT images and investigate the effect of different types of loss functions.Furthermore,experiments have been conducted on the Graphical Processing Unit(GPU)and Central Processing Unit(CPU)to compare the performance of the proposed models.The results demonstrated that images from the proposed WGAN-SSIM,WGAN-VGG-SSIM,and WGAN-VGG-SSL were denoised better than those from state-of-the-art models(WGAN,WGAN-VGG,and SMGAN)and converged to a stable equilibrium compared with WGAN and WGAN-VGG.The proposed models are effective in reducing noise,suppressing artifacts,and maintaining informative structure and texture details,especially WGAN-VGG-SSL which achieved a high peak-signalto-noise ratio(PNSR)on both GPU(26.1336)and CPU(25.8270).The average accuracy of WGAN-VGG-SSL outperformed that of the state-ofthe-art methods by 1 percent.Experiments prove that theWGAN-VGG-SSL is more stable than the other models on both GPU and CPU.展开更多
The widespread use of computed tomography(CT)in clinical practice has made the public focus on the cumulative radiation dose delivered to patients.Low-dose CT(LDCT)reduces the X-ray radiation dose,yet compromises qual...The widespread use of computed tomography(CT)in clinical practice has made the public focus on the cumulative radiation dose delivered to patients.Low-dose CT(LDCT)reduces the X-ray radiation dose,yet compromises quality and decreases diagnostic performance.Researchers have made great efforts to develop various algorithms for LDCT and introduced deep-learning techniques,which have achieved impressive results.However,most of these methods are directly performed on reconstructed LDCT images,in which some subtle structures and details are readily lost during the reconstruction procedure,and convolutional neural network(CNN)-based methods for raw LDCT projection data are rarely reported.To address this problem,we adopted an attention residual dense CNN,referred to as AttRDN,for LDCT sinogram denoising.First,it was aided by the attention mechanism,in which the advantages of both feature fusion and global residual learning were used to extract noise from the contaminated LDCT sinograms.Then,the denoised sinogram was restored by subtracting the noise obtained from the input noisy sinogram.Finally,the CT image was reconstructed using filtered back-projection.The experimental results qualitatively and quantitatively demonstrate that the proposed AttRDN can achieve a better performance than state-of-the-art methods.Importantly,it can prevent the loss of detailed information and has the potential for clinical application.展开更多
To minimize radiation risk,dose reduction is important in the diagnostic and therapeutic applications of computed tomography(CT).However,image noise degrades image quality owing to the reduced X-ray dose and a possibl...To minimize radiation risk,dose reduction is important in the diagnostic and therapeutic applications of computed tomography(CT).However,image noise degrades image quality owing to the reduced X-ray dose and a possible unacceptably reduced diagnostic performance.Deep learning approaches with convolutional neural networks(CNNs)have been proposed for natural image denoising;however,these approaches might introduce image blurring or loss of original gradients.The aim of this study was to compare the dose-dependent properties of a CNN-based denoising method for low-dose CT with those of other noise-reduction methods on unique CT noise-simulation images.To simulate a low-dose CT image,a Poisson noise distribution was introduced to normal-dose images while convoluting the CT unit-specific modulation transfer function.An abdominal CT of 100 images obtained from a public database was adopted,and simulated dose-reduction images were created from the original dose at equal 10-step dose-reduction intervals with a final dose of 1/100.These images were denoised using the denoising network structure of CNN(DnCNN)as the general CNN model and for transfer learning.To evaluate the image quality,image similarities determined by the structural similarity index(SSIM)and peak signal-to-noise ratio(PSNR)were calculated for the denoised images.Significantly better denoising,in terms of SSIM and PSNR,was achieved by the DnCNN than by other image denoising methods,especially at the ultra-low-dose levels used to generate the 10%and 5%dose-equivalent images.Moreover,the developed CNN model can eliminate noise and maintain image sharpness at these dose levels and improve SSIM by approximately 10%from that of the original method.In contrast,under small dose-reduction conditions,this model also led to excessive smoothing of the images.In quantitative evaluations,the CNN denoising method improved the low-dose CT and prevented over-smoothing by tailoring the CNN model.展开更多
Background: Mortality outcomes in trials of low-dose computed tomography(CT) screening for lung cancer are inconsistent. This study aimed to evaluate whether CT screening in urban areas of China could reduce lung canc...Background: Mortality outcomes in trials of low-dose computed tomography(CT) screening for lung cancer are inconsistent. This study aimed to evaluate whether CT screening in urban areas of China could reduce lung cancer mortality and to investigate the factors that associate with the screening effect.Methods: A decision tree model with three scenarios(low-dose CT screening, chest X-ray screening, and no screening) was developed to compare screening results in a simulated Chinese urban cohort(100,000 smokers aged45-80 years). Data of participant characteristics were obtained from national registries and epidemiological surveys for estimating lung cancer prevalence. The selection of other tree variables such as sensitivities and specificities of low-dose CT and chest X-ray screening were based on literature research. Differences in lung cancer mortality(primary outcome), false diagnoses, and deaths due to false diagnosis were calculated. Sensitivity analyses were performed to identify the factors that associate with the screening results and to ascertain worst and optimal screening effects considering possible ranges of the variables.Results: Among the 100,000 subjects, there were 448,541, and 591 lung cancer deaths in the low-dose CT, chest X-ray, and no screening scenarios, respectively(17.2% reduction in low-dose CT screening over chest X-ray screening and 24.2% over no screening). The costs of the two screening scenarios were 9387 and 2497 false diagnoses and 7and 2 deaths due to false diagnosis among the 100,000 persons, respectively. The factors that most influenced death reduction with low-dose CT screening over no screening were lung cancer prevalence in the screened cohort, lowdose CT sensitivity, and proportion of early-stage cancers among low-dose CT detected lung cancers. Considering all possibilities, reduction in deaths(relative numbers) with low-dose CT screening in the worst and optimal cases were16(5.4%) and 288(40.2%) over no screening, respectively.Conclusions: In terms of mortality outcomes, our findings favor conducting low-dose CT screening in urban China.However, approaches to reducing false diagnoses and optimizing important screening conditions such as enrollment criteria for screening are highly needed.展开更多
Because of the growing concern over the radiation dose delivered to patients, X-ray cone-beam CT(CBCT) imaging of low dose is of great interest. It is difficult for traditional reconstruction methods such as Feldkamp ...Because of the growing concern over the radiation dose delivered to patients, X-ray cone-beam CT(CBCT) imaging of low dose is of great interest. It is difficult for traditional reconstruction methods such as Feldkamp to reduce noise and keep resolution at low doses. A typical method to solve this problem is using optimizationbased methods with careful modeling of physics and additional constraints. However, it is computationally expensive and very time-consuming to reach an optimal solution. Recently, some pioneering work applying deep neural networks had some success in characterizing and removing artifacts from a low-dose data set. In this study,we incorporate imaging physics for a cone-beam CT into a residual convolutional neural network and propose a new end-to-end deep learning-based method for slice-wise reconstruction. By transferring 3D projection to a 2D problem with a noise reduction property, we can not only obtain reconstructions of high image quality, but also lower the computational complexity. The proposed network is composed of three serially connected sub-networks: a cone-to-fan transformation sub-network, a 2D analytical inversion sub-network, and an image refinement sub-network. This provides a comprehensive solution for end-to-end reconstruction for CBCT. The advantages of our method are that the network can simplify a 3D reconstruction problem to a 2D slice-wise reconstruction problem and can complete reconstruction in an end-to-end manner with the system matrix integrated into the network design. Furthermore, reconstruction can be less computationally expensive and easily parallelizable compared with iterative reconstruction methods.展开更多
Cerebral perfusion computed tomography(PCT)is an important imaging modality for evaluating cerebrovascular diseases and stroke symptoms.With widespread public concern about the potential cancer risks and health hazard...Cerebral perfusion computed tomography(PCT)is an important imaging modality for evaluating cerebrovascular diseases and stroke symptoms.With widespread public concern about the potential cancer risks and health hazards associated with cumulative radiation exposure in PCT imaging,considerable research has been conducted to reduce the radiation dose in X-ray-based brain perfusion imaging.Reducing the dose of X-rays causes severe noise and artifacts in PCT images.To solve this problem,we propose a deep learning method called NCS-Unet.The exceptional characteristics of non-subsampled contourlet transform(NSCT)and the Sobel filter are introduced into NCS-Unet.NSCT decomposes the convolved features into high-and low-frequency components.The decomposed high-frequency component retains image edges,contrast imaging traces,and noise,whereas the low-frequency component retains the main image information.The Sobel filter extracts the contours of the original image and the imaging traces caused by the contrast agent decay.The extracted information is added to NCS-Unet to improve its performance in noise reduction and artifact removal.Qualitative and quantitative analyses demonstrated that the proposed NCS-Unet can improve the quality of low-dose cone-beam CT perfusion reconstruction images and the accuracy of perfusion parameter calculations.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11975292,12222512)the CAS"Light of West Chin"Program+1 种基金the CAS Pioneer Hundred Talent Programthe Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)。
文摘In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection.
基金supported by National Natural Science Foundation ofChina (61672279)Project of “Six Talents Peak” in Jiangsu (2012-WLW-023)OpenFoundation of State Key Laboratory of Hydrology-Water Resources and HydraulicEngineering, Nanjing Hydraulic Research Institute, China (2016491411).
文摘In order to improve the quality of low-dose computational tomography (CT)images, the paper proposes an improved image denoising approach based on WGAN-gpwith Wasserstein distance. For improving the training and the convergence efficiency, thegiven method introduces the gradient penalty term to WGAN network. The novelperceptual loss is introduced to make the texture information of the low-dose imagessensitive to the diagnostician eye. The experimental results show that compared with thestate-of-art methods, the time complexity is reduced, and the visual quality of low-doseCT images is significantly improved.
基金supported in part by National Natural Science Foundation of China(No.62101136)Shanghai Municipal of Science and Technology Project(No.20JC1419500)+3 种基金Shanghai Sailing Program(No.21YF1402800)the Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX01)ZJLab,Shanghai Center for Brain Science and Brain-Inspired Technology,the National Key R&D Program of China(No.2018YFB1305104)the Natural Science Foundation of Shanghai(No.21ZR1403600).
文摘Lung nodule classification based on low-dose computed tomography(LDCT)images has attracted major attention thanks to the reduced radiation dose and its potential for early diagnosis of lung cancer from LDCT-based lung cancer screening.However,LDCT images suffer from severe noise,largely influencing the performance of lung nodule classification.Current methods combining denoising and classification tasks typically require the corresponding normal-dose CT(NDCT)images as the supervision for the denoising task,which is impractical in the context of clinical diagnosis using LDCT.To jointly train these two tasks in a unified framework without the NDCT images,this paper introduces a novel self-supervised method,termed strided Noise2Neighbors or SN2N,for blind medical image denoising and lung nodule classification,where the supervision is generated from noisy input images.More specifically,the proposed SN2N can construct the supervision infor-mation from its neighbors for LDCT denoising,which does not need NDCT images anymore.The proposed SN2N method enables joint training of LDCT denoising and lung nodule classification tasks by using self-supervised loss for denoising and cross-entropy loss for classification.Extensively experimental results on the Mayo LDCT dataset demonstrate that our SN2N achieves competitive performance compared with the supervised learning methods that have paired NDCT images as supervision.Moreover,our results on the LIDC-IDRI dataset show that the joint training of LDCT denoising and lung nodule classification significantly improves the performance of LDCT-based lung nodule classification.
基金funded by the National Natural Science Foundation of China(Grants No.61871277 and 61671312)in part by the Project of State Administration of Traditional Chinese Medicine of Sichuan(Grant No.2021MS012).
文摘Low-dose computed tomography(LDCT)denoising is an indispensable procedure in the medical imaging field,which not only improves image quality,but can mitigate the potential hazard to patients caused by routine doses.Despite the improvement in performance of the cycle-consistent generative adversarial network(CycleGAN)due to the well-paired CT images shortage,there is still a need to further reduce image noise while retaining detailed features.Inspired by the residual encoder–decoder convolutional neural network(RED-CNN)and U-Net,we propose a novel unsupervised model using CycleGAN for LDCT imaging,which injects a two-sided network into selective kernel networks(SK-NET)to adaptively select features,and uses the patchGAN discriminator to generate CT images with more detail maintenance,aided by added perceptual loss.Based on patch-based training,the experimental results demonstrated that the proposed SKFCycleGAN outperforms competing methods in both a clinical dataset and the Mayo dataset.The main advantages of our method lie in noise suppression and edge preservation.
文摘Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are exposed.Increasing the radiation dose to get a better image may lead to the development of genetic disorders and cancer in the patients;on the other hand,decreasing it by using a Low-Dose CT(LDCT)image may cause more noise and increased artifacts,which can compromise the diagnosis.So,image reconstruction from LDCT image data is necessary to improve radiologists’judgment and confidence.This study proposed three novel models for denoising LDCT images based on Wasserstein Generative Adversarial Network(WGAN).They were incorporated with different loss functions,including Visual Geometry Group(VGG),Structural Similarity Loss(SSIM),and Structurally Sensitive Loss(SSL),to reduce noise and preserve important information on LDCT images and investigate the effect of different types of loss functions.Furthermore,experiments have been conducted on the Graphical Processing Unit(GPU)and Central Processing Unit(CPU)to compare the performance of the proposed models.The results demonstrated that images from the proposed WGAN-SSIM,WGAN-VGG-SSIM,and WGAN-VGG-SSL were denoised better than those from state-of-the-art models(WGAN,WGAN-VGG,and SMGAN)and converged to a stable equilibrium compared with WGAN and WGAN-VGG.The proposed models are effective in reducing noise,suppressing artifacts,and maintaining informative structure and texture details,especially WGAN-VGG-SSL which achieved a high peak-signalto-noise ratio(PNSR)on both GPU(26.1336)and CPU(25.8270).The average accuracy of WGAN-VGG-SSL outperformed that of the state-ofthe-art methods by 1 percent.Experiments prove that theWGAN-VGG-SSL is more stable than the other models on both GPU and CPU.
基金This work was supported in part by the National Key R&D Program of China(Nos.2016YFC0104609 and 2019YFC0605203)The Fundamental Research Funds for the Central Universities(Nos.2019CDYGYB019 and 2020CDJ-LHZZ-075)。
文摘The widespread use of computed tomography(CT)in clinical practice has made the public focus on the cumulative radiation dose delivered to patients.Low-dose CT(LDCT)reduces the X-ray radiation dose,yet compromises quality and decreases diagnostic performance.Researchers have made great efforts to develop various algorithms for LDCT and introduced deep-learning techniques,which have achieved impressive results.However,most of these methods are directly performed on reconstructed LDCT images,in which some subtle structures and details are readily lost during the reconstruction procedure,and convolutional neural network(CNN)-based methods for raw LDCT projection data are rarely reported.To address this problem,we adopted an attention residual dense CNN,referred to as AttRDN,for LDCT sinogram denoising.First,it was aided by the attention mechanism,in which the advantages of both feature fusion and global residual learning were used to extract noise from the contaminated LDCT sinograms.Then,the denoised sinogram was restored by subtracting the noise obtained from the input noisy sinogram.Finally,the CT image was reconstructed using filtered back-projection.The experimental results qualitatively and quantitatively demonstrate that the proposed AttRDN can achieve a better performance than state-of-the-art methods.Importantly,it can prevent the loss of detailed information and has the potential for clinical application.
基金This work was supported by JSPS KAKENHI,No.18 K15563.
文摘To minimize radiation risk,dose reduction is important in the diagnostic and therapeutic applications of computed tomography(CT).However,image noise degrades image quality owing to the reduced X-ray dose and a possible unacceptably reduced diagnostic performance.Deep learning approaches with convolutional neural networks(CNNs)have been proposed for natural image denoising;however,these approaches might introduce image blurring or loss of original gradients.The aim of this study was to compare the dose-dependent properties of a CNN-based denoising method for low-dose CT with those of other noise-reduction methods on unique CT noise-simulation images.To simulate a low-dose CT image,a Poisson noise distribution was introduced to normal-dose images while convoluting the CT unit-specific modulation transfer function.An abdominal CT of 100 images obtained from a public database was adopted,and simulated dose-reduction images were created from the original dose at equal 10-step dose-reduction intervals with a final dose of 1/100.These images were denoised using the denoising network structure of CNN(DnCNN)as the general CNN model and for transfer learning.To evaluate the image quality,image similarities determined by the structural similarity index(SSIM)and peak signal-to-noise ratio(PSNR)were calculated for the denoised images.Significantly better denoising,in terms of SSIM and PSNR,was achieved by the DnCNN than by other image denoising methods,especially at the ultra-low-dose levels used to generate the 10%and 5%dose-equivalent images.Moreover,the developed CNN model can eliminate noise and maintain image sharpness at these dose levels and improve SSIM by approximately 10%from that of the original method.In contrast,under small dose-reduction conditions,this model also led to excessive smoothing of the images.In quantitative evaluations,the CNN denoising method improved the low-dose CT and prevented over-smoothing by tailoring the CNN model.
基金supported by Peking Union Medical College Youth Fund and the Fundamental Research Funds for the Central Universities(No.2017310049)
文摘Background: Mortality outcomes in trials of low-dose computed tomography(CT) screening for lung cancer are inconsistent. This study aimed to evaluate whether CT screening in urban areas of China could reduce lung cancer mortality and to investigate the factors that associate with the screening effect.Methods: A decision tree model with three scenarios(low-dose CT screening, chest X-ray screening, and no screening) was developed to compare screening results in a simulated Chinese urban cohort(100,000 smokers aged45-80 years). Data of participant characteristics were obtained from national registries and epidemiological surveys for estimating lung cancer prevalence. The selection of other tree variables such as sensitivities and specificities of low-dose CT and chest X-ray screening were based on literature research. Differences in lung cancer mortality(primary outcome), false diagnoses, and deaths due to false diagnosis were calculated. Sensitivity analyses were performed to identify the factors that associate with the screening results and to ascertain worst and optimal screening effects considering possible ranges of the variables.Results: Among the 100,000 subjects, there were 448,541, and 591 lung cancer deaths in the low-dose CT, chest X-ray, and no screening scenarios, respectively(17.2% reduction in low-dose CT screening over chest X-ray screening and 24.2% over no screening). The costs of the two screening scenarios were 9387 and 2497 false diagnoses and 7and 2 deaths due to false diagnosis among the 100,000 persons, respectively. The factors that most influenced death reduction with low-dose CT screening over no screening were lung cancer prevalence in the screened cohort, lowdose CT sensitivity, and proportion of early-stage cancers among low-dose CT detected lung cancers. Considering all possibilities, reduction in deaths(relative numbers) with low-dose CT screening in the worst and optimal cases were16(5.4%) and 288(40.2%) over no screening, respectively.Conclusions: In terms of mortality outcomes, our findings favor conducting low-dose CT screening in urban China.However, approaches to reducing false diagnoses and optimizing important screening conditions such as enrollment criteria for screening are highly needed.
基金supported by the National Natural Science Foundation of China(Nos.61771279,11435007)the National Key Research and Development Program of China(No.2016YFF0101304)
文摘Because of the growing concern over the radiation dose delivered to patients, X-ray cone-beam CT(CBCT) imaging of low dose is of great interest. It is difficult for traditional reconstruction methods such as Feldkamp to reduce noise and keep resolution at low doses. A typical method to solve this problem is using optimizationbased methods with careful modeling of physics and additional constraints. However, it is computationally expensive and very time-consuming to reach an optimal solution. Recently, some pioneering work applying deep neural networks had some success in characterizing and removing artifacts from a low-dose data set. In this study,we incorporate imaging physics for a cone-beam CT into a residual convolutional neural network and propose a new end-to-end deep learning-based method for slice-wise reconstruction. By transferring 3D projection to a 2D problem with a noise reduction property, we can not only obtain reconstructions of high image quality, but also lower the computational complexity. The proposed network is composed of three serially connected sub-networks: a cone-to-fan transformation sub-network, a 2D analytical inversion sub-network, and an image refinement sub-network. This provides a comprehensive solution for end-to-end reconstruction for CBCT. The advantages of our method are that the network can simplify a 3D reconstruction problem to a 2D slice-wise reconstruction problem and can complete reconstruction in an end-to-end manner with the system matrix integrated into the network design. Furthermore, reconstruction can be less computationally expensive and easily parallelizable compared with iterative reconstruction methods.
基金supported in part by Science and Technology Program of Guangdong (No. 2018B030333001)the State’s Key Project of Research and Development Plan (Nos. 2017YFC0109202,2017YFA0104302 and 2017YFC0107900)the National Natural Science Foundation (Nos. 81530060 and 61871117)
文摘Cerebral perfusion computed tomography(PCT)is an important imaging modality for evaluating cerebrovascular diseases and stroke symptoms.With widespread public concern about the potential cancer risks and health hazards associated with cumulative radiation exposure in PCT imaging,considerable research has been conducted to reduce the radiation dose in X-ray-based brain perfusion imaging.Reducing the dose of X-rays causes severe noise and artifacts in PCT images.To solve this problem,we propose a deep learning method called NCS-Unet.The exceptional characteristics of non-subsampled contourlet transform(NSCT)and the Sobel filter are introduced into NCS-Unet.NSCT decomposes the convolved features into high-and low-frequency components.The decomposed high-frequency component retains image edges,contrast imaging traces,and noise,whereas the low-frequency component retains the main image information.The Sobel filter extracts the contours of the original image and the imaging traces caused by the contrast agent decay.The extracted information is added to NCS-Unet to improve its performance in noise reduction and artifact removal.Qualitative and quantitative analyses demonstrated that the proposed NCS-Unet can improve the quality of low-dose cone-beam CT perfusion reconstruction images and the accuracy of perfusion parameter calculations.