期刊文献+
共找到909篇文章
< 1 2 46 >
每页显示 20 50 100
An NMOS output-capacitorless low-dropout regulator with dynamic-strength event-driven charge pump 被引量:1
1
作者 Yiling Xie Baochuang Wang +1 位作者 Dihu Chen Jianping Guo 《Journal of Semiconductors》 EI CAS CSCD 2024年第6期23-34,共12页
In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loo... In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change. 展开更多
关键词 output-capacitorless low-dropout regulator fast transient low quiescent current event-driven charge pump
下载PDF
A Capacitor-Free CMOS Low-Dropout Regulator for System-on-Chip Application 被引量:1
2
作者 韩鹏 王志功 +1 位作者 徐勇 李伟 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第8期1507-1510,共4页
A stable CMOS low drop-out regulator without an off-chip capacitor for system-on-chip application is presen- ted. By using an on-chip pole splitting technique and an on-chip pole-zero canceling technique, high stabili... A stable CMOS low drop-out regulator without an off-chip capacitor for system-on-chip application is presen- ted. By using an on-chip pole splitting technique and an on-chip pole-zero canceling technique, high stability is achieved without an off-chip capacitor. The chip was implemented in CSMC's 0.5μm CMOS technology and the die area is 600μm×480μm. The error of the output voltage due to line variation is less than -+ 0.21% ,and the quiescent current is 39.8μA. The power supply rejection ratio at 100kHz is -33.9dB, and the output noise spectral densities at 100Hz and 100kHz are 1.65 and 0.89μV √Hz, respectively. 展开更多
关键词 low-dropout regulator pole splitting pole-zero cancelling CAPACITOR-FREE
下载PDF
CMOS low-dropout regulator with 3.3 μA quiescent current without off-chip capacitor
3
作者 王忆 崔传荣 +1 位作者 巩文超 何乐年 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期13-17,共5页
A CMOS (complementary metal-oxide-semiconductor transistor) low-dropout regulator (LDO) with 3. 3 V output voltage and 100 mA output current for system-on-chip applications to reduce board space and external pins ... A CMOS (complementary metal-oxide-semiconductor transistor) low-dropout regulator (LDO) with 3. 3 V output voltage and 100 mA output current for system-on-chip applications to reduce board space and external pins is presented. By utilizing a dynamic slew-rate enhancement(SRE) circuit and nested Miller compensation (NMC) on the LDO structure, the proposed LDO provides high stability during line and load regulation without off-chip load capacitors. The overshot voltage is limited within 550 mV and the settling time is less than 50 μs when the load current decreases from 100 mA to 1 mA. By using a 30 nA reference current, the quiescent current is 3.3 μA. The proposed design is implemented by CSMC 0. 5 μm mixed-signal process. The experimental results agree with the simulation results. 展开更多
关键词 low-dropout regulator off-chip capacitor slew-rate enhancement circuit nested Miller compensation(NMC)
下载PDF
Theoretical Study of Double Cost Function Linear Quadratic Regulator(LQR)
4
作者 姜澜 王信义 永井正夫 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期80-86,共7页
Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, anothe... Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, another free form cost function was introduced to express the physical need plainly and optimize weights of LQ cost function using the search algorithms. As an instance, DLQR was applied in determining the control input in the front steering angle compensation control (FSAC) model for heavy duty vehicles. The brief simulations show that DLQR is powerful enough to specify the engineering requirements correctly and balance many factors effectively. The concept and applicable field of LQR are expanded by DLQR to optimize the system with a free form cost function. 展开更多
关键词 optimal control linear quadratic regulator (LQR) search algorithm front steering angle compensation control
下载PDF
Adaptive Linear Quadratic Regulator for Continuous-Time Systems With Uncertain Dynamics 被引量:3
5
作者 Sumit Kumar Jha Shubhendu Bhasin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期833-841,共9页
In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to conti... In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to continuously adapt and converge to the optimal controller. The result differs from previous results in that the adaptive optimal controller is designed without the knowledge of the system dynamics and an initial stabilizing policy. Further, the controller is updated continuously using input-output data, as opposed to the commonly used switched/intermittent updates which can potentially lead to stability issues. An online state derivative estimator facilitates the design of a model-free controller. Gradient-based update laws are developed for online estimation of the optimal gain. Uniform exponential stability of the closed-loop system is established using the Lyapunov-based analysis, and a simulation example is provided to validate the theoretical contribution. 展开更多
关键词 ADAPTIVE optimal control continuous POLICY UPDATE linear QUADRATIC regulator UNCERTAIN system dynamics
下载PDF
An Ultra-Low Quiescent Current CMOS Low-Dropout Regulator with Small Output Voltage Variations 被引量:2
6
作者 Xin Cheng Yizhong Yang +2 位作者 Longjie Du Yang Chen Guangjun Xie 《Journal of Power and Energy Engineering》 2014年第4期477-482,共6页
An ultra-low quiescent current low-dropout regulator with small output voltage variations and improved load regulation is presented in this paper. It makes use of dynamically-biased shunt feedback as the buffer stage ... An ultra-low quiescent current low-dropout regulator with small output voltage variations and improved load regulation is presented in this paper. It makes use of dynamically-biased shunt feedback as the buffer stage and the LDO regulator can be stable for all load conditions. The proposed structure also employs a momentarily current-boosting circuit to reduce the output voltage to the normal value when output is switched from full load to no load. The whole circuit is designed in a 0.18 μm CMOS technology with a quiescent current of 550 nA. The maximum output voltage variation is less than 20 mV when used with 1 μF external capacitor. 展开更多
关键词 Ultra-Low Quiescent CURRENT low-dropout regulator SMALL OUTPUT VARIATIONS
下载PDF
Kalman Filter and H_(∞)Filter Based Linear Quadratic Regulator for Furuta Pendulum
7
作者 N.Arulmozhi T.Aruldoss Albert Victorie 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期605-623,共19页
This paper deals with Furuta Pendulum(FP)or Rotary Inverted Pendulum(RIP),which is an under-actuated non-minimum unstable non-linear process.The process considered along with uncertainties which are unmodelled and ana... This paper deals with Furuta Pendulum(FP)or Rotary Inverted Pendulum(RIP),which is an under-actuated non-minimum unstable non-linear process.The process considered along with uncertainties which are unmodelled and analyses the performance of Linear Quadratic Regulator(LQR)with Kalman filter and H∞filter as two filter configurations.The LQR is a technique for developing practical feedback,in addition the desired x shows the vector of desirable states and is used as the external input to the closed-loop system.The effectiveness of the two filters in FP or RIP are measured and contrasted with rise time,peak time,settling time and maximum peak overshoot for time domain performance.The filters are also tested with gain margin,phase margin,disk stability margins for frequency domain performance and worst case stability margins for performance due to uncertainties.The H-infinity filter reduces the estimate error to a minimum,making it resilient in the worst case than the standard Kalman filter.Further,when theβrestriction value lowers,the H∞filter becomes more robust.The worst case gain performance is also focused for the two filter configurations and tested where H∞filter is found to outperform towards robust stability and performance.Also the switchover between the two filters is dependent upon a user-specified co-efficient that gives the flexibility in the design of non-linear systems.The non-linear process is tested for set point tracking,disturbance rejection,un-modelled noise dynamics and uncertainties,which records robust performance towards stability. 展开更多
关键词 Furuta pendulum linear quadratic regulator kalman filter non-linear process two filter configurations
下载PDF
POSITIVE PERIODIC SOLUTION FOR A NONAUTONOMOUS LOGISTIC MODEL WITH LINEAR FEEDBACK REGULATION 被引量:1
8
作者 Ding Xiaoquan Cheng Shuhan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第3期302-312,共11页
A nonautonomous delayed logistic model with linear feedback regulation is proposed in this paper. Sufficient conditions are derived for the existence, uniqueness and global asymptotic stability of positive periodic so... A nonautonomous delayed logistic model with linear feedback regulation is proposed in this paper. Sufficient conditions are derived for the existence, uniqueness and global asymptotic stability of positive periodic solution of the model 展开更多
关键词 logistic model periodic solution global asymptotic stability linear feedback regulation.
下载PDF
Adaptation in Stochastic Dynamic Systems—Survey and New Results III: Robust LQ Regulator Modification
9
作者 Innokentiy V. Semushin 《International Journal of Communications, Network and System Sciences》 2012年第9期609-623,共15页
The paper is intended to provide algorithmic and computational support for solving the frequently encountered linear-quadratic regulator (LQR) problems based on receding-horizon control methodology which is most appli... The paper is intended to provide algorithmic and computational support for solving the frequently encountered linear-quadratic regulator (LQR) problems based on receding-horizon control methodology which is most applicable for adaptive and predictive control where Riccati iterations rather than solution of Algebraic Riccati Equations are needed. By extending the most efficient computational methods of LQG estimation to the LQR problems, some new algorithms are formulated and rigorously substantiated to prevent Riccati iterations divergence when cycled in computer implementation. Specifically developed for robust LQR implementation are the two-stage Riccati scalarized iteration algorithms belonging to one of three classes: 1) Potter style (square-root), 2) Bierman style (LDLT), and 3) Kailath style (array) algorithms. They are based on scalarization, factorization and orthogonalization techniques, which allow more reliable LQR computations. Algorithmic templates offer customization flexibility, together with the utmost brevity, to both users and application programmers, and to ensure the independence of a specific computer language. 展开更多
关键词 Adaptive CONTROL Factorization Least Squares linear Systems LQG Estimator LQ regulator ORTHOGONALIZATION Receding Horizon CONTROL SCALARIZATION
下载PDF
Robust Leader-Following Output Regulation of Uncertain Multi-Agent Systems With Time-Varying Delay 被引量:5
10
作者 Ala Shariati Qing Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第4期807-817,共11页
In this paper, the robust analysis and design of leader-following output regulation for multi-agent systems described by general linear models is given in presence of timevarying delay and model uncertainty. To this a... In this paper, the robust analysis and design of leader-following output regulation for multi-agent systems described by general linear models is given in presence of timevarying delay and model uncertainty. To this aim, a new regulation protocol for the closed-loop multi-agent system under a directed graph is proposed. An important specification of the proposed protocol is to guarantee the leader-following output regulation for uncertain multi-agent systems with both stable and unstable agents. Since many signals can be approximated by a combination of the stationary and ramp signals, the presented results work for adequate variety of the leaders. The analysis and design conditions are presented in terms of certain matrix inequalities. The method proposed can be used for both stationary and ramp leaders. Simulation results are presented to show the effectiveness of the proposed method. 展开更多
关键词 linear matrix inequality(LMI) multi-agent systems robust leader-following output regulation time-varying delay
下载PDF
Least Squares Solution for Discrete Time Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences 被引量:2
11
作者 Sie Long Kek Jiao Li Kok Lay Teo 《Applied Mathematics》 2017年第1期1-14,共14页
In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical... In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical system with the quadratic criterion cost function, is employed. In our approach, the model-based optimal control problem is reformulated into the input-output equations. In this way, the Hankel matrix and the observability matrix are constructed. Further, the sum squares of output error is defined. In these point of views, the least squares optimization problem is introduced, so as the differences between the real output and the model output could be calculated. Applying the first-order derivative to the sum squares of output error, the necessary condition is then derived. After some algebraic manipulations, the optimal control law is produced. By substituting this control policy into the input-output equations, the model output is updated iteratively. For illustration, an example of the direct current and alternating current converter problem is studied. As a result, the model output trajectory of the least squares solution is close to the real output with the smallest sum squares of output error. In conclusion, the efficiency and the accuracy of the approach proposed are highly presented. 展开更多
关键词 Least SQUARES SOLUTION STOCHASTIC Optimal Control linear Quadratic regulator Sum SQUARES of Output Error INPUT-OUTPUT Equations
下载PDF
Suppression of thermal postbuckling and nonlinear panel flutter motions of variable stiffness composite laminates using piezoelectric actuators 被引量:1
12
作者 TAO Ji-xiao YI Sheng-hui +1 位作者 DENG Ya-jie HE Xiao-qiao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3757-3777,共21页
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu... Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches. 展开更多
关键词 active control finite element method linear quadratic regulator algorithm nonlinear flutter thermal postbuckling variable stiffness composite laminates
下载PDF
Computing of LQR Technique for Nonlinear System Using Local Approximation 被引量:1
13
作者 Aamir Shahzad Ali Altalbe 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期853-871,共19页
The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local a... The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local approximation.The LQR is an excellent method for developing a controller for nonlinear systems.It provides optimal feedback to make the closed-loop system robust and stable,rejecting external disturbances.Model-based optimal controller for a nonlinear system such as a rotatory inverted pendulum has not been designed and implemented using Newton-Euler,Lagrange method,and local approximation.Therefore,implementing LQR to an underactuated nonlinear system was vital to design a stable controller.A mathematical model has been developed for the controller design by utilizing the Newton-Euler,Lagrange method.The nonlinear model has been linearized around an equilibrium point.Linear and nonlinear models have been compared to find the range in which linear and nonlinear models’behaviour is similar.MATLAB LQR function and system dynamics have been used to estimate the controller parameters.For the performance evaluation of the designed controller,Simulink has been used.Linear and nonlinear models have been simulated along with the designed controller.Simulations have been performed for the designed controller over the linear and nonlinear system under different conditions through varying system variables.The results show that the system is stable and robust enough to act against external disturbances.The controller maintains the rotary inverted pendulum in an upright position and rejects disruptions like falling under gravitational force or any external disturbance by adjusting the rotation of the horizontal link in both linear and nonlinear environments in a specific range.The controller has been practically designed and implemented.It is vivid from the results that the controller is robust enough to reject the disturbances in milliseconds and keeps the pendulum arm deflection angle to zero degrees. 展开更多
关键词 COMPUTING rotary inverted pendulum(RIP) modeling and simulation linear quadratic regulator(LQR) nonlinear system
下载PDF
A 3 A sink/source current fast transient response low-dropout Gm driven linear regulator
14
作者 初秀琴 李庆委 +3 位作者 来新泉 袁冰 李演明 赵永瑞 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第6期73-77,共5页
A 3 A sink/source G_m-driven CMOS low-dropout regulator(LDO),specially designed for low input voltage and low cost,is presented by utilizing the structure of a current mirror G_m(transconductance)driving technique... A 3 A sink/source G_m-driven CMOS low-dropout regulator(LDO),specially designed for low input voltage and low cost,is presented by utilizing the structure of a current mirror G_m(transconductance)driving technique,which provides high stability as well as a fast load transient response.The proposed LDO was fabricated by a 0.5μm standard CMOS process,and the die size is as small as 1.0 mm^2.The proposed LDO dissipates 220μA of quiescent current in no-load conditions and is able to deliver up to 3 A of load current.The measured results show that the output voltage can be resumed within 2μs with a less than 1mV overshoot and undershoot in the output current step from-1.8 to 1.8 A with a 0.1μs rising and falling time at three 10μF ceramic capacitors. 展开更多
关键词 sink/source linear regulator load transient response low-dropout
原文传递
Optimal Feedback Control of Nonlinear Variable-Speed Marine Current Turbine Using a Two-Mass Model
15
作者 Rajae Gaamouche Abdelbari Redouane +2 位作者 Imad El harraki Bouchra Belhorma Abdennebi El Hasnaoui 《Journal of Marine Science and Application》 CSCD 2020年第1期83-95,共13页
This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine(MCT)without pitch operating below the rated marine current speed.Given that the operation of the MCT can be ... This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine(MCT)without pitch operating below the rated marine current speed.Given that the operation of the MCT can be divided into several operating zones on the basis of the marine current speed,the system control objectives are different for each zone.To deal with this issue,we develop a new control approach based on a linear quadratic regulator with variable generator torque.Our proposed approach enables the optimization of the rotational speed of the turbine,which maximizes the power extracted by the MCT and minimizes the transient loads on the drivetrain.The novelty of our study is the use of a real profile of marine current speed from the northern coasts of Morocco.The simulation results obtained using MATLAB Simulink indicate the effectiveness and robustness of the proposed control approach on the electrical and mechanical parameters with the variations of marine current speed. 展开更多
关键词 Marine current turbine Two-mass model Tip speed ratio linearIZATION Optimal control linear quadratic regulator(LQR)
下载PDF
Programmable Voltage Regulating Method for 15 kV High Voltage DC Power Supply 被引量:2
16
作者 XIAO Jian-feng CHEN Xin +2 位作者 MI Yan LI Cheng-xiang YAO Chen-guo 《高电压技术》 EI CAS CSCD 北大核心 2008年第12期2745-2750,共6页
In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method we... In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method were digital potentiometer MAXIM 5455 and linear photoelectric coupling LOC110,and application programs were compiled using Visual Basic which was graphical compiling language,furthermore the communication between exterior and computer was carried out by ICP7044D module,in consequence the output value of high voltage DC power supply could be regulated with computer.The measured results showed that this method could accurately,conveniently and rapidly regulate the output value of high voltage DC power supply. 展开更多
关键词 高压电流电源 程序控制 调压方法 数字电位计
下载PDF
Containment control for heterogeneous multi-agent systems with time delay via an output regulation approach
17
作者 WEI Wenjun LÜJiahui +1 位作者 Huang Julong GE Junde 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期79-88,共10页
This paper presents the containment analysis and design of heterogeneous linear multi-agent systems(MAS)with time-delay under the output regulation.The leaders are treated as exosystems and an modified output regulati... This paper presents the containment analysis and design of heterogeneous linear multi-agent systems(MAS)with time-delay under the output regulation.The leaders are treated as exosystems and an modified output regulation error is designed,which can deal with more than one leader in containment control,then the containment problem will be turned into an output regulation problem.A novel analysis framework of the output regulation is proposed to design a dynamic state feedback control law for containment error and distributed observer when the agents cannot receive external system signal,which guarantees the convergence of all follower agents to the dynamic convex hull spanned by the leaders.The system stability for time-delay containment is proved by the output regulation method instead of the Lyapunov method.Finally,a numerical example is given to illustrate the validity of the theoretical results. 展开更多
关键词 heterogeneous multi-agent systems output regulation linear time-delay systems containment control
下载PDF
Regulation of the Reacted Layer Thickness in a Gas-Solid Reacting System
18
作者 Miguel A. Barron Dulce Y. Medina Gabriel Plascencia 《Intelligent Control and Automation》 2014年第3期91-96,共6页
A mathematical model for the analysis of a gas-solid reacting system is presented. This model is an alternative to the classical shrinking-core model. The model has a structure that can be easily transformed into a ca... A mathematical model for the analysis of a gas-solid reacting system is presented. This model is an alternative to the classical shrinking-core model. The model has a structure that can be easily transformed into a canonical control form, which is proper for controller synthesis. Analytical solution of the model to describe the open-loop behavior is expressed in terms of the Lambert function. The Lambert function is evaluated from aTaylorexpansion series. Besides, a controller is proposed to regulate the reacted layer thickness using initially the diffusion coefficient as control input. The control law is synthesized employing the feedback linearization technique. Main contributions of this work are the synthesis of the layer thickness controller, and the employment of the process temperature as substitute of the diffusion coefficient as the control input. 展开更多
关键词 Diffusion COEFFICIENT FEEDBACK linearIZATION GAS-SOLID SYSTEM Lambert Function Reacted Layer Thickness regulATION
下载PDF
General Integral Control Design via Feedback Linearization
19
作者 Baishun Liu Jianhui Li Xiangqian Luo 《Intelligent Control and Automation》 2014年第1期19-23,共5页
Based on the feedback linearization technique, we present a systematic design method for the General Integral Control and a new integral control strategy along with a class of fire-new integrator. By using the linear ... Based on the feedback linearization technique, we present a systematic design method for the General Integral Control and a new integral control strategy along with a class of fire-new integrator. By using the linear system theory and Lyapunov method along with LaSalle’s invariance principle, the conditions on the control gains to ensure regionally as well as semi-globally asymptotic stability are provided. Theoretical analysis and simulation results demonstrated that: by using this design method, General Integral Control can deal with nonlinearity and uncertainties of dynamics more effectively;the optimum response can be achieved in the whole control domain, even under uncertain payload and varying-time disturbances. This means that General Integral Control has strong robustness, fast convergence, good flexibility, and then makes the engineers design a high performance controller more easily. 展开更多
关键词 General INTEGRAL CONTROL NONlinear CONTROL Robust CONTROL NONlinear INTEGRATOR Feedback linearIZATION Output regulation
下载PDF
无人驾驶车辆路径跟踪混合控制策略研究 被引量:1
20
作者 李兆凯 刘新宁 +2 位作者 彭国轩 孙雪 陈涛 《汽车技术》 CSCD 北大核心 2024年第3期37-46,共10页
针对单一控制算法无法同时满足无人驾驶车辆对路径跟踪精度和控制器求解速度需求的问题,提出一种基于线性二次型调节器(LQR)和模型预测控制(MPC)的混合控制策略。该策略在低速工况下使用线性二次型调节器、在高速工况下使用模型预测控... 针对单一控制算法无法同时满足无人驾驶车辆对路径跟踪精度和控制器求解速度需求的问题,提出一种基于线性二次型调节器(LQR)和模型预测控制(MPC)的混合控制策略。该策略在低速工况下使用线性二次型调节器、在高速工况下使用模型预测控制算法进行路径跟踪控制,在此基础上设计基于有限状态机(FSM)的控制算法切换机制,并通过遗传算法(GA)对控制参数进行优化,基于CarSim和MATLAB/Simulink仿真平台对混合控制策略进行仿真验证,并进一步完成了实车试验。试验结果表明,所设计的混合控制策略能够在提高跟踪精度的基础上缩短计算时间,与单一控制算法相比,平均横向误差和平均航向误差分别减小了26.3%和39.6%,平均计算时间缩短了10.9%。 展开更多
关键词 路径跟踪 线性二次型调节器 模型预测控制 有限状态机 遗传算法
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部