In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.I...In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms.展开更多
In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mod...In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mode analytically and obtain an optimal condition for the photon blockade.By including three transition pathways,we find that higher excitations of the cavity mode can be further suppressed and the zero-delay second-order correlation function can be reduced additionally.Based on the master equation,we simulate the system evolution and find that the analytical solutions match well with the numerical results.Our scheme is robust with small fluctuations of parameters and may be used as a new type of single photon source.展开更多
As a manufacturing method that is focused on end-users,3D printing has gained a lot of attention in recent years due to its unique advantages in fabricating complex three-dimensional structures.Various new micro-nano ...As a manufacturing method that is focused on end-users,3D printing has gained a lot of attention in recent years due to its unique advantages in fabricating complex three-dimensional structures.Various new micro-nano 3D printing methods have been developed to meet the demand for high-precision and high-yield manufacturing1-9.Among them,multi-photon-photon lithography(MPL) is a promising 3D nanofabrication technology due to its capability of true 3D digital processing and nanoscale processing resolution beyond the diffraction limit.It has been widely used to fabricate microoptics10,11,photonic crystals12,microfluidics13,meta-surfaces14,and mechanical metamaterials15.展开更多
The generation of ultrashort high-power light sources in the mid-infrared(mid-IR)to terahertz(THz)range is of interest for applications in a number of fields,from fundamental research to biology and medicine.Besides c...The generation of ultrashort high-power light sources in the mid-infrared(mid-IR)to terahertz(THz)range is of interest for applications in a number of fields,from fundamental research to biology and medicine.Besides conventional laser technology,photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses.Here,we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength.The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse.Owing to its relatively long wavelength,the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble.Consequently,the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths.This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.展开更多
We demonstrate the photon-number resolution(PNR)capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode(APD)that is equipped with a simple,low-distortion ultra-narrowband interference circuit for the ...We demonstrate the photon-number resolution(PNR)capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode(APD)that is equipped with a simple,low-distortion ultra-narrowband interference circuit for the rejection of its background capacitive response.Through discriminating the avalanche current amplitude,we are able to resolve up to four detected photons in a single detection gate with a detection efficiency as high as 45%.The PNR capability is limited by the avalanche current saturation,and can be increased to five photons at a lower detection efficiency of 34%.The PNR capability,combined with high efficiency and low noise,will find applications in quantum information processing technique based on photonic qubits.展开更多
The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum...The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum dot with an emission wavelength of 800 nm at room temperature are studied.The second-order correlation function at zero delay time is much smaller than 0.1,which proves that the emission from single quantum dots at 800 nm is a highly pure single-photon source.The effects of the irradiation duration on the fluorescence from single quantum dots are analyzed.The experimental results can be explained by a recombination model including a multi-nonradiative recombination center model and a multi-charged model.展开更多
An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod...An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.展开更多
Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversio...Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversion in micro/nanofiber.The phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets,the joint spectral intensity of which has an elliptical locus with a fixed eccentricity of√6/3.Therefore,we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels with high heralding efficiency for the first time.Choosing an appropriate pump wavelength can compensate for the fabrication errors of micro/nanofiber and also generate narrowband,non-degenerate photon triplet sources with a high signal-to-noise ratio.Furthermore,the long-period micro/nanofiber grating introduces a new controllable degree of freedom to tailor phase matching,resulting from the periodic oscillation of dispersion.In this scheme,the wavelength of photon triplets can be flexibly tuned using quasi-phase matching.We study the generation of photon triplets from this novel perspective of spectrum engineering,and we believe that this work will accelerate the practical implementation of photon triplets in quantum information processing.展开更多
Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propo...Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.展开更多
Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean ...Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean plasma photonic crystals(APPCs) by use of dielectric barrier discharges in air. Dynamical control on both the macrostructures including the lattice symmetry and the crystal orientation, and the microstructures including the fine structures of scattering elements has been achieved. The formation mechanisms of APPCs are studied by time-resolved measurements together with numerical simulations. Large omnidirectional band gaps of APPCs have been obtained. The tunable topology of APPCs may offer new opportunities for fabricating multi-functional and highly-integrated microwave devices.展开更多
Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an effic...Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.展开更多
Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to...Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.展开更多
Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it elimina...Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems.展开更多
Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being ne...Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being neglected.Nevertheless,FP modes can play important roles in some phenomena,as exemplified by their coupling with guided resonance(GR)modes to achieve bound states in the continuum(BIC).Here,we further demonstrate the genuine resonance mode capability of FP modes PhC slabs.Firstly,we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes.Secondly,we construct exceptional points(EPs)in both momentum and parameter spaces through the coupling of FP and GR modes.Furthermore,we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology.This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes,facilitating the realization of desired functionalities through mode coupling.展开更多
Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this ...Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.展开更多
Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have bee...Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.展开更多
Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit ...Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.展开更多
The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits ...The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits has become indispensable for research aimed at precisely determining the dose in radiotherapy. Among the numerous algorithms developed in recent years, the GAMOS code, which utilizes the Geant4 toolkit for Monte Carlo simula-tions, incorporates various electromagnetic physics models and multiple scattering models for simulating particle interactions with matter. This makes it a valuable tool for dose calculations in medical applications and throughout the patient’s volume. The aim of this present work aims to vali-date the GAMOS code for the simulation of a 6 MV photon-beam output from the Elekta Synergy Agility linear accelerator. The simulation involves mod-eling the major components of the accelerator head and the interactions of the radiation beam with a homogeneous water phantom and particle information was collected following the modeling of the phase space. This space was po-sitioned under the X and Y jaws, utilizing three electromagnetic physics mod-els of the GAMOS code: Standard, Penelope, and Low-Energy, along with three multiple scattering models: Goudsmit-Saunderson, Urban, and Wentzel-VI. The obtained phase space file was used as a particle source to simulate dose distributions (depth-dose and dose profile) for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> at depths of 10 cm and 20 cm in a water phantom, with a source-surface distance (SSD) of 90 cm from the target. We compared the three electromagnetic physics models and the three multiple scattering mod-els of the GAMOS code to experimental results. Validation of our results was performed using the gamma index, with an acceptability criterion of 3% for the dose difference (DD) and 3 mm for the distance-to-agreement (DTA). We achieved agreements of 94% and 96%, respectively, between simulation and experimentation for the three electromagnetic physics models and three mul-tiple scattering models, for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> for depth-dose curves. For dose profile curves, a good agreement of 100% was found between simulation and experimentation for the three electromagnetic physics models, as well as for the three multiple scattering models for a field size of 5 × 5 cm<sup>2</sup> at 10 cm and 20 cm depths. For a field size of 10 × 10 cm<sup>2</sup>, the Penelope model dominated with 98% for 10 cm, along with the three multiple scattering models. The Penelope model and the Standard model, along with the three multiple scattering models, dominated with 100% for 20 cm. Our study, which compared these different GAMOS code models, can be crucial for enhancing the accuracy and quality of radiotherapy, contributing to more effective patient treatment. Our research compares various electro-magnetic physics models and multiple scattering models with experimental measurements, enabling us to choose the models that produce the most reli-able results, thereby directly impacting the quality of simulations. This en-hances confidence in using these models for treatment planning. Our re-search consistently contributes to the progress of Monte Carlo simulation techniques in radiation therapy, enriching the scientific literature.展开更多
This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type...This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.展开更多
High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to ana...High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.展开更多
基金the support of the National Natural Science Foundation of China(Grant No.62204201)。
文摘In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms.
基金Project supported by the National Natural Science Foundation of China(Grant No.61601196).
文摘In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mode analytically and obtain an optimal condition for the photon blockade.By including three transition pathways,we find that higher excitations of the cavity mode can be further suppressed and the zero-delay second-order correlation function can be reduced additionally.Based on the master equation,we simulate the system evolution and find that the analytical solutions match well with the numerical results.Our scheme is robust with small fluctuations of parameters and may be used as a new type of single photon source.
文摘As a manufacturing method that is focused on end-users,3D printing has gained a lot of attention in recent years due to its unique advantages in fabricating complex three-dimensional structures.Various new micro-nano 3D printing methods have been developed to meet the demand for high-precision and high-yield manufacturing1-9.Among them,multi-photon-photon lithography(MPL) is a promising 3D nanofabrication technology due to its capability of true 3D digital processing and nanoscale processing resolution beyond the diffraction limit.It has been widely used to fabricate microoptics10,11,photonic crystals12,microfluidics13,meta-surfaces14,and mechanical metamaterials15.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11975154,12375236,12135009,and 12275249)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25050100)。
文摘The generation of ultrashort high-power light sources in the mid-infrared(mid-IR)to terahertz(THz)range is of interest for applications in a number of fields,from fundamental research to biology and medicine.Besides conventional laser technology,photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses.Here,we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength.The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse.Owing to its relatively long wavelength,the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble.Consequently,the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths.This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.
基金supported by the National Natural Science Foundation of China(62250710162 and 12274406)the National Key Research and Development Program of China(2022YFA1405100).
文摘We demonstrate the photon-number resolution(PNR)capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode(APD)that is equipped with a simple,low-distortion ultra-narrowband interference circuit for the rejection of its background capacitive response.Through discriminating the avalanche current amplitude,we are able to resolve up to four detected photons in a single detection gate with a detection efficiency as high as 45%.The PNR capability is limited by the avalanche current saturation,and can be increased to five photons at a lower detection efficiency of 34%.The PNR capability,combined with high efficiency and low noise,will find applications in quantum information processing technique based on photonic qubits.
基金Project supported by the National Natural Science Foundation of China(Grant No.92165202)the Innovation Program for Quantum Science and Technology,China(Grant No.2021ZD0300701)the Strategic Priority Research Program(A)of Chinese Academy of Sciences(Grant No.XDA18040300).
文摘The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum dot with an emission wavelength of 800 nm at room temperature are studied.The second-order correlation function at zero delay time is much smaller than 0.1,which proves that the emission from single quantum dots at 800 nm is a highly pure single-photon source.The effects of the irradiation duration on the fluorescence from single quantum dots are analyzed.The experimental results can be explained by a recombination model including a multi-nonradiative recombination center model and a multi-charged model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274478 and 61775244)the National Key Research and Development Program of China(Grant Nos.2021YFB2800604 and 2021YFB2800302).
文摘An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.
基金Project supported by the National Natural Science Foundation of China(Grant No.61605249)the Science and Technology Key Project of Henan Province of China(Grant Nos.182102210577 and 232102211086).
文摘Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversion in micro/nanofiber.The phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets,the joint spectral intensity of which has an elliptical locus with a fixed eccentricity of√6/3.Therefore,we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels with high heralding efficiency for the first time.Choosing an appropriate pump wavelength can compensate for the fabrication errors of micro/nanofiber and also generate narrowband,non-degenerate photon triplet sources with a high signal-to-noise ratio.Furthermore,the long-period micro/nanofiber grating introduces a new controllable degree of freedom to tailor phase matching,resulting from the periodic oscillation of dispersion.In this scheme,the wavelength of photon triplets can be flexibly tuned using quasi-phase matching.We study the generation of photon triplets from this novel perspective of spectrum engineering,and we believe that this work will accelerate the practical implementation of photon triplets in quantum information processing.
基金Project supported by the National Natural Science Foundation of China(Grant No.NSFC 12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology,China(Grant No.YK22-02-08)+3 种基金the Qing Lan Project of Jiangsu Province,Chinathe Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX23_0964)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China(Grant No.ZK21-05-09)。
文摘Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.
基金supported by National Natural Science Foundation of China(Nos.12275065 and 11975089)Natural Science Foundation of Hebei Province(Nos.A2021201010 and A2021201003)+4 种基金Interdisciplinary Research Program of Natural Science of Hebei University(No.DXK202108)Hebei Provincial Central Government Guiding Local Science and Technology Development Funds(No.236Z1501G)Scientific Research and Innovation Team Foundation of Hebei University(No.IT2023B03)The Excellent Youth Research Innovation Team of Hebei University(No.QNTD202402)Regional Key Projects of National Natural Science Foundation of China(No.U23A20678).
文摘Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean plasma photonic crystals(APPCs) by use of dielectric barrier discharges in air. Dynamical control on both the macrostructures including the lattice symmetry and the crystal orientation, and the microstructures including the fine structures of scattering elements has been achieved. The formation mechanisms of APPCs are studied by time-resolved measurements together with numerical simulations. Large omnidirectional band gaps of APPCs have been obtained. The tunable topology of APPCs may offer new opportunities for fabricating multi-functional and highly-integrated microwave devices.
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0705000)Leading-edge technology Program of Jiangsu Natural Science Foundation (Grant No.BK20192001)the National Natural Science Foundation of China (Grant No.11974178)。
文摘Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.
文摘Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.
基金supported by the National Key Research and Development Program of China(2022YFB2803700)the National Natural Science Foundation of China(62235002,62322501,12204021,62105008,62235003,and 62105260)+5 种基金Beijing Municipal Science and Technology Commission(Z221100006722003)Beijing Municipal Natural Science Foundation(Z210004)China Postdoctoral Science Foundation(2021T140004)Major Key Project of PCL,the Natural Science Basic Research Program of Shaanxi Province(2022 JQ-638)Young Talent fund of University Association for Science and Technology in Shaanxi,China(20220135)Young Talent fund of Xi'an Association for science and technology(095920221308).
文摘Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074049 and 12347101)。
文摘Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being neglected.Nevertheless,FP modes can play important roles in some phenomena,as exemplified by their coupling with guided resonance(GR)modes to achieve bound states in the continuum(BIC).Here,we further demonstrate the genuine resonance mode capability of FP modes PhC slabs.Firstly,we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes.Secondly,we construct exceptional points(EPs)in both momentum and parameter spaces through the coupling of FP and GR modes.Furthermore,we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology.This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes,facilitating the realization of desired functionalities through mode coupling.
基金funded by the National Nature Science Foundation of China(Grant Nos.52175509 and 52130504)National Key Research and Development Program of China(2017YFF0204705)2021 Postdoctoral Innovation Research Plan of Hubei Province(0106100226)。
文摘Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.
基金Project supported by the National Key Research and Development Program of China (Grant No.2018YFB2200403)the National Natural Science Foundation of China (Grant Nos.91950204 and 92150302)。
文摘Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.
基金Project supported by the National Natural Science Foundation of China (Grant No.12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology (Grant No.YK22-02-08)+2 种基金the Qing Lan Project of Jiangsu Provincethe Natural Science Foundation of Jiangsu Province of China (Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China (Grant No.ZK21-05-09)。
文摘Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.
文摘The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits has become indispensable for research aimed at precisely determining the dose in radiotherapy. Among the numerous algorithms developed in recent years, the GAMOS code, which utilizes the Geant4 toolkit for Monte Carlo simula-tions, incorporates various electromagnetic physics models and multiple scattering models for simulating particle interactions with matter. This makes it a valuable tool for dose calculations in medical applications and throughout the patient’s volume. The aim of this present work aims to vali-date the GAMOS code for the simulation of a 6 MV photon-beam output from the Elekta Synergy Agility linear accelerator. The simulation involves mod-eling the major components of the accelerator head and the interactions of the radiation beam with a homogeneous water phantom and particle information was collected following the modeling of the phase space. This space was po-sitioned under the X and Y jaws, utilizing three electromagnetic physics mod-els of the GAMOS code: Standard, Penelope, and Low-Energy, along with three multiple scattering models: Goudsmit-Saunderson, Urban, and Wentzel-VI. The obtained phase space file was used as a particle source to simulate dose distributions (depth-dose and dose profile) for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> at depths of 10 cm and 20 cm in a water phantom, with a source-surface distance (SSD) of 90 cm from the target. We compared the three electromagnetic physics models and the three multiple scattering mod-els of the GAMOS code to experimental results. Validation of our results was performed using the gamma index, with an acceptability criterion of 3% for the dose difference (DD) and 3 mm for the distance-to-agreement (DTA). We achieved agreements of 94% and 96%, respectively, between simulation and experimentation for the three electromagnetic physics models and three mul-tiple scattering models, for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> for depth-dose curves. For dose profile curves, a good agreement of 100% was found between simulation and experimentation for the three electromagnetic physics models, as well as for the three multiple scattering models for a field size of 5 × 5 cm<sup>2</sup> at 10 cm and 20 cm depths. For a field size of 10 × 10 cm<sup>2</sup>, the Penelope model dominated with 98% for 10 cm, along with the three multiple scattering models. The Penelope model and the Standard model, along with the three multiple scattering models, dominated with 100% for 20 cm. Our study, which compared these different GAMOS code models, can be crucial for enhancing the accuracy and quality of radiotherapy, contributing to more effective patient treatment. Our research compares various electro-magnetic physics models and multiple scattering models with experimental measurements, enabling us to choose the models that produce the most reli-able results, thereby directly impacting the quality of simulations. This en-hances confidence in using these models for treatment planning. Our re-search consistently contributes to the progress of Monte Carlo simulation techniques in radiation therapy, enriching the scientific literature.
基金supported in part by the National Natural Science Foundation of China(Nos.62071441 and 61701464)in part by the Fundamental Research Funds for the Central Universities(No.202151006).
文摘This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.
基金The authors gratefully acknowledge the science teams of NASA High Mountain Asia 8-meter DEM and NASA ICESat-2 for providing access to the data.This work was conducted with the infrastructure provided by the National Remote Sensing Centre(NRSC),for which the authors were indebted to the Director,NRSC,Hyderabad.We acknowledge the continued support and scientific insights from Mr.Rakesh Fararoda,Mr.Sagar S Salunkhe,Mr.Hansraj Meena,Mr.Ashish K.Jain and other staff members of Regional Remote Sensing Centre-West,NRSC/ISRO,Jodhpur.The authors want to acknowledge Dr.Kamal Pandey,Scientist,IIRS,Dehradun,for sharing field-level information about the Auli-Joshimath.This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.