Diabetic wounds, as a complication of diabetes, are slow to heal and seriously affect the quality of life of patients. Functional hydrogel dressing is an effective approach to improve diabetic wound healing. Electrica...Diabetic wounds, as a complication of diabetes, are slow to heal and seriously affect the quality of life of patients. Functional hydrogel dressing is an effective approach to improve diabetic wound healing. Electrical stimulation (ES) therapy is conducive to promoting cell migration and wound healing. In this work, a multifunctional PPTZ hydrogel wound dressing was developed by freeze-thaw method with polyvinyl alcohol (PVA), phytic acid (PA), tannic acid (TA), and Zinc chloride. The obtained PPTZ hydrogel has good mechanical properties (stress and strain of 700.03 kPa and 575.08%), light transmittance (close to 100%) and antibacterial rate (over 75%). With good biocompatibility, antioxidant abilities and conductivity, the PPTZ hydrogel could effectively promote the healing of diabetic wounds with two weeks under the action of electric field, which provides an auxiliary treatment strategy for diabetic patients.展开更多
Following acute cerebral ischemia in rats, plasma calcitonin gene-related peptide decreased and the level of serum neuron specific enolase and the volume of the infarction increased. Square-wave and triangular-wave el...Following acute cerebral ischemia in rats, plasma calcitonin gene-related peptide decreased and the level of serum neuron specific enolase and the volume of the infarction increased. Square-wave and triangular-wave electrical stimulation with low or high intensities could increase the plasma calcitonin gene-related peptide, decrease the serum neuron specific enolase and reduce the infarction volume in the brain in rats with cerebral ischemia. There was no significant difference between different wave forms and intensities. The experimental findings indicate that low-frequency electrical stimulation with varying waveforms and intensities can treat acute cerebral ischemia in rats.展开更多
Low-frequency electrical stimulation has resulted in favorable effects in the treatment of post-stroke dysphagia. However, the safety of cervical low-frequency electrical stimulation remains unclear because of numerou...Low-frequency electrical stimulation has resulted in favorable effects in the treatment of post-stroke dysphagia. However, the safety of cervical low-frequency electrical stimulation remains unclear because of numerous nerves and blood vessels in the neck. In the present study, rats with ischemic stroke underwent low-frequency electrical stimulation, and systemic and local effects of electrical stimulation at different densities and waveforms were investigated. Electrical stimulation resulted in no significant effects on body mass, liver or kidney function, or mortality rate. In addition, no significant adverse reaction was observed, despite overly high intensity of low-frequency electrical stimulation, which induced laryngismus, results from the present study suggested that it is safe to stimulate the neck with a low-frequency electricity under certain intensities.展开更多
Despite emerging contemporary biotechnological methods such as gene-and stem cell-based therapy,there are no clinically established therapeutic strategies for neural regeneration after spinal cord injury.Our previous ...Despite emerging contemporary biotechnological methods such as gene-and stem cell-based therapy,there are no clinically established therapeutic strategies for neural regeneration after spinal cord injury.Our previous studies have demonstrated that transplantation of genetically engineered human umbilical cord blood mononuclear cells producing three recombinant therapeutic molecules,including vascular endothelial growth factor(VEGF),glial cell-line derived neurotrophic factor(GDNF),and neural cell adhesion molecule(NCAM)can improve morpho-functional recovery of injured spinal cord in rats and mini-pigs.To investigate the efficacy of human umbilical cord blood mononuclear cells-mediated triple-gene therapy combined with epidural electrical stimulation in the treatment of spinal cord injury,in this study,rats with moderate spinal cord contusion injury were intrathecally infused with human umbilical cord blood mononuclear cells expressing recombinant genes VEGF165,GDNF,NCAM1 at 4 hours after spinal cord injury.Three days after injury,epidural stimulations were given simultaneously above the lesion site at C5(to stimulate the cervical network related to forelimb functions)and below the lesion site at L2(to activate the central pattern generators)every other day for 4 weeks.Rats subjected to the combined treatment showed a limited functional improvement of the knee joint,high preservation of muscle fiber area in tibialis anterior muscle and increased H/M ratio in gastrocnemius muscle 30 days after spinal cord injury.However,beneficial cellular outcomes such as reduced apoptosis and increased sparing of the gray and white matters,and enhanced expression of heat shock and synaptic proteins were found in rats with spinal cord injury subjected to the combined epidural electrical stimulation with gene therapy.This study presents the first proof of principle study of combination of the multisite epidural electrical stimulation with ex vivo triple gene therapy(VEGF,GDNF and NCAM)for treatment of spinal cord injury in rat models.The animal protocols were approved by the Kazan State Medical University Animal Care and Use Committee(approval No.2.20.02.18)on February 20,2018.展开更多
BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can no...BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can nourish nerve, postpone muscular atrophy, and help the postoperative neuromuscular function. OBJECTIVE: To observe the effects of low-frequency pulse percutaneous electric stimulation on the functional recovery of postoperative patients with peripheral nerve injury, and quantitatively evaluate the results of electromyogram (EMG) examination before and after treatment. DESIGN : A retrospective case analysis SETTING: The Sixth People's Hospital affiliated to Shanghai Jiaotong University PARTICIPANTS: Nineteen postoperative inpatients with peripheral nerve injury were selected from the De- partment of Orthopaedics, the Sixth People's Hospital affiliated to Shanghai Jiaotong University from June 2005 to January 2006, including 13 males and 6 females aged 24-62 years with an average of 36 years old. There were 3 cases of brachial plexus nerve injury, 3 of median nerve injury, 7 of radial nerve injury, 3 of ul- nar nerve injury and 3 of common peroneal nerve injury, and all the patients received probing nerve fiber restoration. Their main preoperative manifestations were dennervation, pain in limbs, motor and sensory disturbances. All the 19 patients were informed with the therapeutic program and items for evaluation. METHODS: ① Low-frequency pulse percutaneous electric stimulation apparatus: The patients were given electric stimulation with the TERESA cantata instrument (TERESA-0, Shanghai Teresa Health Technology, Co., Ltd.). The patients were stimulated with symmetric square waves of 1-111 Hz, and the intensity was 1.2-5.0 mA, and it was gradually adjusted according to the recovered conditions of neural regeneration following the principle that the intensity was strong enough and the patients felt no obvious upset. They were treated for 4- 24 weeks, 10-30 minutes for each time, 1-3 times a day, and 6 weeks as a course. ② EMG examination was applied to evaluate the recoveries of recruitment, motor conduction velocity (MCV) and sensory conduction velocity (SCV) before and after treatment. The patients were examined with the EMG apparatus (DIS- A2000C, Danmark) before and after the treatment of percutaneous electric stimulation. ③Standards for evaluating the effects included cured (complete recovery of motor functions, muscle strength of grade 5, no abnormality in EMG examination), obviously effective [general recovery of motor function, muscle strength of grade 4, no or a few denervation potentials, motor conduction velocity (MCV) and sensory conduction velocity (SCV)], improved (partial recovery of motor function, muscle strength of grade 3, denervation potentials and reinneration potentials, slowed MCV and SCV, invalid (no obvious changes of motor function). MAIN OUTCOME MEASURES: ① Ameliorated degree of the nerve function of the postoperative patients with peripheral nerve injury treated with percutaneous electric stimulation; ② Changes of EMG examination before and after treatment. RESULTS: All the 19 postoperative patients with peripheral nerve injury were involved in the analysis of results. ① Comparison of nerve function before and after treatment in 19 patients with peripheral nerve injury of different sites: For the patients with radial nerve injury (n=7), the nerve functions all completely recovered after 8-week treatment, and the cured and obvious rate was 100% (7/7); For the patients with brachial plexus nerve injury (n=3), 1 case had no obvious improvement, and the cured and obvious rate was 67% (2/3); For the patients with common peroneal nerve injury (n=3), the extension of foot dorsum generally recovered in 1 case of nerve contusion after 4-week treatment, and the cured and obvious rate was 67% (2/3); For the patients with median nerve injury (n=3), muscle strength was obviously recovered, and the cured and obvious rate was 100% (3/3); For the patients with ulnar nerve injury (n=3), 1 case only had recovery of partial senses, and the cured and obvious rate was 67% (2/3). Totally 9 cases were cured, 7 were obviously effective, 1 was improved, and only 2 were invalid. After 4 courses, the cured rate of damaged nerve function after four courses was 47% (9/19), and effective rate was 89% (17/19).② Comparison of EMG examination before and after treatment: Before and after percutaneous electric stimulation, he effective rates of recruitment, MCV and SCV were 89% (17/19), 58% (11/19), 47% (9/19) respectively, and there were extremely obvious differences (P〈 0.01). CONCLUSION: ①Low-frequency pulse percutaneous electric stimulation can improve the nerve function of postoperative patients with peripheral nerve injury of different sites, especially that the injuries of radial nerve and median nerve recover more obviously. ②Percutaneous electric stimulation can ameliorate the indexes of EMG examination, especially the recruitment, in postoperative patients with peripheral nerve injury.展开更多
BACKGROUND The prominent symptoms of chronic pelvic pain syndrome(CPPS)are urogenital pain,lower urinary tract symptoms,psychological problems,and sexual dysfunction.Traditional pharmacological treatments have poor ef...BACKGROUND The prominent symptoms of chronic pelvic pain syndrome(CPPS)are urogenital pain,lower urinary tract symptoms,psychological problems,and sexual dysfunction.Traditional pharmacological treatments have poor efficacy and more untoward reaction and complications.Magnetic vibration magnetoelectric therapy is a non-invasive form of physiotherapy.Nevertheless,its effectiveness in improving urinary discomfort and relieving pain in patients requires further exploration.AIM To investigate the clinical efficacy of the magnetic vibration magnetoelectric therapy instrument in the treatment of chronic prostatitis(CP)/CPPS.METHODS Seventy patients with CP/CPPS were collected from the outpatient clinic and ward of the Department of Male Medicine,Jiangsu Province Hospital of Traditional Chinese Medicine,and were treated with magnetic vibration magnetoelectric therapy once a day for a period of 14 d.National Institutes of healthchronic prostatitis symptom index(NIH-CPSI),international index of erectile function 5(IIEF-5),premature ejaculation diagnostic tool(PEDT),generalized anxiety disorder(GAD),patient health questionnaire,the pain catastrophizing scale(PCS)and traditional Chinese medicine syndrome(TCMS)scores were performed before and after treatment.RESULTS The total effective rate of treatment was 58.5%,and the total NIH-CPSI score,pain symptoms,voiding symptoms,quality of life,IIEF-5,PEDT,GAD,PCS and TCMS scores all decreased significantly(P<0.05).CONCLUSION Magnetic vibration magnetotherapy is effective in improving urinary discomfort,relieving pain,improving quality of life,improving sexual dysfunction and relieving negative emotions such as anxiety in patients with CP/CPPS.展开更多
Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon’s model of rat scia...Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon’s model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves.展开更多
Post-concussion syndrome (PCS) is a complex disorder with various symptoms. There is limited evidence to support that any intervention enhances recovery after a concussion. This pilot study aimed to examine the effica...Post-concussion syndrome (PCS) is a complex disorder with various symptoms. There is limited evidence to support that any intervention enhances recovery after a concussion. This pilot study aimed to examine the efficacy of neck paraspinal muscles electrical stimulation (ES) in conjunction with physical therapy (PT) on reducing the severity of post concussive symptoms. Twenty-four individuals with PCS were randomly assigned to the ES group (PT + ES) or the control group (PT only). Both groups received the intervention twice a week for eight weeks. Clinical measures including the Concussion Signs/Symptoms Checklist, balance error scoring system, King-Devick test, ImPACT, and the Standardized Assessment of Concussion were used to evaluate the symptoms. We investigated the recovery rate by calculating slopes of changes over time for each participant. A changing slope was derived by linearly fitting the symptoms severity over time with the initial severity score as the intercept. Significant overall improvement was observed in both groups after the interventions. There was no significant difference seen in total symptom recovery rate between two groups (-1.49 ± 1.59 versus -1.2 ± 1.56, p = 0.32). The cognitive symptoms recovery rate of the ES group was faster than the control group (-0.5 ± 0.49 and -0.13 ± 0.46 respectively, p = 0.04). Physical therapy targeting the cervical region is beneficial for persons with PCS. Moreover, peripheral electrical stimulation on the paraspinal muscles surrounding the neck region could potentially advance the cognitive function recovery of persons with PCS.展开更多
Since the last decade deep brain stimulation has been proposed as an alternative treatment for patients who do not become seizure-free with the current pharmacological treatments and cannot undergo resective surgical ...Since the last decade deep brain stimulation has been proposed as an alternative treatment for patients who do not become seizure-free with the current pharmacological treatments and cannot undergo resective surgical procedure. However, the optimal stimulation parameters remain undetermined and active research in humans and animals is necessary. The present study was designed to investigate the effect of unilateral Low Frequency Stimulation (LFS) of hippocampus on seizure development by using the hippocampal rapid kindling method (hRK) in rats. We used male Wistar rats implanted with electrodes in the ventral hippocampus. All rats underwent hRK (biphasic square wave pulses, 20 Hz for 10 seconds) during three consecutive days (twelve stimulations per day). The control group (hRK;n = 6) received only RK stimulus, while the treated group (LFS-hRK;n = 8) received also LFS (biphasic square wave pulses, 1 Hz for 30 seconds) immediately before the RK stimulus, during three consecutive days. At the end of behavioral testing on day 3, 62% (P < 0.05) of the animals receiving LFS treatment were still not fully kindled staying in stages 0-III (P < 0.01). The number of stimulations needed to achieve generalized seizures (stage IV-V of Racine scale) was significantly higher (P < 0.05) in the LFS group with respect to control group. No significant differences in the cumulative daily afterdischarge duration were observed between both groups. These findings suggest that preemptive LFS can significantly decrease the incidence of hippocampus-kindled seizures and delay the progression and secondary generalization of focal seizures.展开更多
Effective and safe electrical stimulation of the retinal ganglion cells is at the heart of retinal prosthesis design.However,the effectiveness and safety demand of the electrical stimulation is often at odds against e...Effective and safe electrical stimulation of the retinal ganglion cells is at the heart of retinal prosthesis design.However,the effectiveness and safety demand of the electrical stimulation is often at odds against each other.Besides,the nerve fiber layer above retinal ganglion cells limits the spatial resolution of stimulation.Also,current retinal prosthesis still cannot selectively activate the ON or OFF visual pathways,thus cannot relay the correct luminance information to the brain.With decades of development,the stimulation protocol for retinal implants began to tackle these problems.We believe that a novel design of electrical stimulation scheme,combined with gene therapy technique,can improve the selectivity and spatial resolution of retinal implants and further lower the damage caused by electric stimulation.展开更多
Intensive care units’ acquired muscle weakness is present in approximately 50% of the patients. Although active muscle training can attenuate weakness, a large proportion of critical patients cannot participate in an...Intensive care units’ acquired muscle weakness is present in approximately 50% of the patients. Although active muscle training can attenuate weakness, a large proportion of critical patients cannot participate in any active mobilization. Neuromuscular electrical stimulation may be an alternative strategy to reverse muscle weakness. The objective of the study was to review the scientific publications on the use of neuromuscular electrical stimulation and its parameters and the main results in patients hospitalized in intensive care units. This is an integrative review surveying studies in online databases. The studies were selected from the following descriptors: neuromuscular electrical stimulation AND parameters AND intensive care units AND muscle weakness. The inclusion criteria included articles that addressed the topic of neuromuscular electrical stimulation and the parameters used in patients admitted to intensive care units, aged 18 years or older. Exclusion criteria were studies involving animals, case reports, letters to the editor and book chapters. The search comprised articles in the Portuguese, English and Spanish languages from January 2013 to March 2019. Of the 185 articles identified, nine met the eligibility criteria. The studies were evaluated assessing the level of evidence, and the relevant information was presented in the table and discussed. The parameters of the neuromuscular electrical stimulation employed in the studies showed positive results for the maintenance of strength and muscle mass. There was evidence of benefits in the local and systemic microcirculation, potentially mobilizing endothelial stem cells, to prevent atrophy, to reduce mechanical ventilation time and stay in intensive care unit;and when incorporated into the usual physiotherapy care, proved to be more effective than usual care. Its use is safe and viable in critically ill patients.展开更多
Objective: To investigate the application value of electrostimulation biofeedback therapy in combination with vaginal dumbbell therapy to postpartum pelvic floor dysfunction. Methods: Retrospective analysis of 200 cas...Objective: To investigate the application value of electrostimulation biofeedback therapy in combination with vaginal dumbbell therapy to postpartum pelvic floor dysfunction. Methods: Retrospective analysis of 200 cases of postpartum pelvic floor dysfunction patients discharged from the hospital from January 2016 to March 2019 as study subjects who were excluded other underlying diseases and were randomly divided into two groups of 100 cases per group, using electrostimulation biofeedback therapy combined vaginal dumbbell therapy as a treatment group. The treatment of electrostimulation biofeedback therapy in combination with kegel was treated as a control group. Then the curative effects of the two groups were compared and statistically analyzed. Results: There was no significant difference in EMG value of postpartum pelvic floor treatment, type I muscle strength, type II muscle strength, muscle type I fatigue, type II fatigue and POP-Q detection results between the two groups before treatment, p > 0.05. There were significant differences in type I muscle strength, type II muscle strength and muscle type I fatigue between the pelvic floor muscles and the muscles at the end of the treatment day, the sixth month and one year after treatment, p ?There was no statistically significant difference at?the end of muscle type II fatigue?treatment day, p > 0.05;while after the treatment of six months and one year, the difference was statistically significant, p 0.05. In addition, the treatment group and the control group were compared before and after treatment, the difference of myoelectric potential value, pelvic floor muscle type I muscle strength, type II muscle strength, muscle type I fatigue degree, type II fatigue degree and POP-Q test result were significant, and the changes in the indicators before and after treatment in the treatment group were significantly higher than the control group. Comparison of urinary incontinence between the two groups before and after treatment, the difference between pre-treatment and the end of treatment day was not statistically significant, p > 0.05;there was significant difference between half a year and one year after treatment (p 0.05, respectively). Comparing?the satisfaction with sexual life after the time of treatment day, half a year and one year after the end of treatment, the difference was statistically significant (p ?Conclusion: Electrical stimulation biofeedback therapy combined with vaginal dumbbell therapy has a good effect in the treatment of postpartum pelvic floor dysfunction, and it is worthy of popularization and application.展开更多
Gait disorders drastically affect the quality of life of stroke survivors,making post-stroke rehabilitation an important research focus.Noninvasive brain stimulation has potential in facilitating neuroplasticity and i...Gait disorders drastically affect the quality of life of stroke survivors,making post-stroke rehabilitation an important research focus.Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment.However,a large inter-individual variability in the response to noninvasive brain stimulation interventions has been increasingly recognized.We first review the neurophysiology of human gait and post-stroke neuroplasticity for gait recovery,and then discuss how noninvasive brain stimulation techniques could be utilized to enhance gait recovery.While post-stroke neuroplasticity for gait recovery is characterized by use-dependent plasticity,it evolves over time,is idiosyncratic,and may develop maladaptive elements.Furthermore,noninvasive brain stimulation has limited reach capability and is facilitative-only in nature.Therefore,we recommend that noninvasive brain stimulation be used adjunctively with rehabilitation training and other concurrent neuroplasticity facilitation techniques.Additionally,when noninvasive brain stimulation is applied for the rehabilitation of gait impairment in stroke survivors,stimulation montages should be customized according to the specific types of neuroplasticity found in each individual.This could be done using multiple mapping techniques.展开更多
AIM:To investigate normal value range of low-frequent repeated nerve stimulation(RNS):whether different low-frequent stimulation and different muscles have different normal value range.METHODS:Low-frequent (3c /s and ...AIM:To investigate normal value range of low-frequent repeated nerve stimulation(RNS):whether different low-frequent stimulation and different muscles have different normal value range.METHODS:Low-frequent (3c /s and 5c /s)RNS of 30healthy people and 27myasth enia gravis(MG)patients were test.RESULTS:Superior limit of amplitude of wave a ttenuation value of low-frequent RNS(x±2.5s)of different muscles(orbicularis oculi muscle,deltoid muscle and abductor muscle of little finger)of healthy people was 5.45%-7.55%.According to our normal value standard,RNS positive rate of MG group was 85%;according to the current criteria(amplitude of wave attenuation value >10%),positive rate of MG group was 70%,th ere was no apparent difference in RNS positive rate(P>0.1).Some labs adopted the criteria that amplitude of wave attenuation value >15%,ac-cording to this criteria,positive r ate of MG group was 51%.Compared with positive rate(85%)obtained according to our criteria,there was apparent difference(P<0.01).CONCLUSION:Each labs should establish their own normal value standard according to difference muscle and different f re-quent.If adopt universal standard,amplitude of wave attenuation value8%or 10%was suggested.展开更多
The mounting endemic of prescription iatrogenic opioid dependence in pain patients provoked this treatise about an alternative method that can be used to treat pain, improve function and reduce the risk of opioid depe...The mounting endemic of prescription iatrogenic opioid dependence in pain patients provoked this treatise about an alternative method that can be used to treat pain, improve function and reduce the risk of opioid dependence. It is well known that as well as the side effects reported for chronic opioid therapy, genetically predisposed individuals are at risk for opioid dependence. We propose the use of the Genetic Addiction Risk Score (GARS) assessment to identify patients early in treatment who should avoid narcotic pain medications. Primarily, this review will be an exploration of the mechanisms of action of an electrotherapeutic alternative to narcotic treatment that can be used to augment tissue healing and reduce the pain associated with human injuries and neuropathies. This particular electrotherapeutic device was developed at the Electronic Waveform Laboratory in Huntington Beach, California and is called the H-Wave? device. The primary effect of the H-Wave?device is stimulation (HWDS) of small diameter fibers of “red-slow-twitch” skeletal muscle. Mechanisms of action of HWDS have been investigated in both animal and human studies. They include edema reduction, induction of nitric oxide dependent augmented microcirculation and angiogenesis, small muscle contraction that eliminates transcapillary fluid shifts, reducing the painful effects of tetanizing fatigue and gradual loading of healing injured muscle tissue that helps repair and remodeling. A recent metaanalysis found a moderate-to-strong-positive effect of the HWDS in providing pain relief, reducing the requirement for pain medication, with the most robust effect being increased functionality. We are proposing that GARS can be used to identify those at risk of developing opioid dependence and that the need for opioid analgesia can be reduced by use of this electro therapeutic alternative to opioid analgesia in the treatment of pain and injuries.展开更多
Epilepsy is one of the most common serious neurological disorders. Pharmacoresistant epilepsy patients are poorly controlled or their seizures are refractory to drug treatment. Resective surgery is frequently a promis...Epilepsy is one of the most common serious neurological disorders. Pharmacoresistant epilepsy patients are poorly controlled or their seizures are refractory to drug treatment. Resective surgery is frequently a promising therapy in this population, however, not all the patients meet the eligibility criteria for the surgical treatment. Deep brain stimulation has been investigated in clinical studies and animal studies as an alternative treatment, but the optimal stimulation parameters remain an issue. The present study was designed to investigate the effect of unilateral high-frequency stimulation (HFS) of hippocampus on seizure development by using the hippocampal rapid kindling method (hRK) in rats, and compared the results with those of low-frequency stimulation previously published by our group. We used male Wistar rats implanted with electrodes in the ventral hippocampus. All rats underwent hRK (biphasic square wave pulses, 20 Hz for 10 seconds) during three consecutive days (twelve stimulations per day). The control group (hRK;n = 7) received only RK stimulus, while the treated group (HFS-hRK;n = 9) received also HFS (biphasic square wave pulses, 130 Hz for 30 seconds) immediately before the RK stimulus, during three consecutive days. At the end of behavioral testing 78% (p 0.01) of the animals receiving HFS treatment were still not fully kindled staying in stages 0 -III (p 0.01). HFS group needed a higher number of stimulations to achieve stage III (p 0.05) with respect to control group. However, no significant differences in the cumulative daily afterdischarge duration were observed. HFS did not present significant differences compared with LFS in any of studied parameters. The findings suggest that unilateral HFS applied on hippocampus effectively inhibited the epileptogenic process induced by hippocampal rapid kindling. According to the comparative results about hippocampal rapid kindled animals stimulated with HFS and LFS (5 Hz), we found no conclusive information on which treatment is most efficient.展开更多
Electrical stimulation(ES),as one of the physical therapy modalities for tumors,has attracted extensive attention of researchers due to its promising efficacy.With the continuous development of material science,nanote...Electrical stimulation(ES),as one of the physical therapy modalities for tumors,has attracted extensive attention of researchers due to its promising efficacy.With the continuous development of material science,nanotechnology,and micro/nano processing techniques,novel electroactive nanomaterials and delicately designed devices have emerged to realize innovative ES therapies,which provide more possibilities and approaches for tumor treatment.Meanwhile,exploring the molecular biological mechanisms underlying different ES modalities affecting tumor cells and their immune microenvironment is also an unresolved hotspot emerging from the current biomedical engineering research.Focusing on the above research interests,in this review,we systematically summarized the effects of different ES parameters on the subcellular structure of tumor cells and the tumor immune microenvironment(TIME)in conjunction with the involved signaling pathways.In addition,we also reviewed the latest progress in novel self-powered devices and electroactive nanomaterials for tumor therapy.Finally,the prospects for the development of electrostimulation tumor therapy are also discussed,bringing inspiration for the development of new physical therapy strategies in the future.展开更多
基金supported by the National key Research and development program of China(No.2022YFC2106100)the National Natural Science Foundation of China(Nos.22078265,and 21908179)the Natural Science Foundation of Shaanxi Province,China(No.218JQ2052).
文摘Diabetic wounds, as a complication of diabetes, are slow to heal and seriously affect the quality of life of patients. Functional hydrogel dressing is an effective approach to improve diabetic wound healing. Electrical stimulation (ES) therapy is conducive to promoting cell migration and wound healing. In this work, a multifunctional PPTZ hydrogel wound dressing was developed by freeze-thaw method with polyvinyl alcohol (PVA), phytic acid (PA), tannic acid (TA), and Zinc chloride. The obtained PPTZ hydrogel has good mechanical properties (stress and strain of 700.03 kPa and 575.08%), light transmittance (close to 100%) and antibacterial rate (over 75%). With good biocompatibility, antioxidant abilities and conductivity, the PPTZ hydrogel could effectively promote the healing of diabetic wounds with two weeks under the action of electric field, which provides an auxiliary treatment strategy for diabetic patients.
基金the National High-Tech R&D Program of China (863 Program),No.2007AA022Z482
文摘Following acute cerebral ischemia in rats, plasma calcitonin gene-related peptide decreased and the level of serum neuron specific enolase and the volume of the infarction increased. Square-wave and triangular-wave electrical stimulation with low or high intensities could increase the plasma calcitonin gene-related peptide, decrease the serum neuron specific enolase and reduce the infarction volume in the brain in rats with cerebral ischemia. There was no significant difference between different wave forms and intensities. The experimental findings indicate that low-frequency electrical stimulation with varying waveforms and intensities can treat acute cerebral ischemia in rats.
基金supported by the National High Technology Research and Development Program of China(The development and application of novel techniques for cerebrovascular disease rehabilitation),No.2007AA02Z482
文摘Low-frequency electrical stimulation has resulted in favorable effects in the treatment of post-stroke dysphagia. However, the safety of cervical low-frequency electrical stimulation remains unclear because of numerous nerves and blood vessels in the neck. In the present study, rats with ischemic stroke underwent low-frequency electrical stimulation, and systemic and local effects of electrical stimulation at different densities and waveforms were investigated. Electrical stimulation resulted in no significant effects on body mass, liver or kidney function, or mortality rate. In addition, no significant adverse reaction was observed, despite overly high intensity of low-frequency electrical stimulation, which induced laryngismus, results from the present study suggested that it is safe to stimulate the neck with a low-frequency electricity under certain intensities.
基金supported by the grant of Russian Science Foundation,No.16-15-00010(to RRI)supported by the Russian Government Program of Competitive Growth of Kazan Federal University。
文摘Despite emerging contemporary biotechnological methods such as gene-and stem cell-based therapy,there are no clinically established therapeutic strategies for neural regeneration after spinal cord injury.Our previous studies have demonstrated that transplantation of genetically engineered human umbilical cord blood mononuclear cells producing three recombinant therapeutic molecules,including vascular endothelial growth factor(VEGF),glial cell-line derived neurotrophic factor(GDNF),and neural cell adhesion molecule(NCAM)can improve morpho-functional recovery of injured spinal cord in rats and mini-pigs.To investigate the efficacy of human umbilical cord blood mononuclear cells-mediated triple-gene therapy combined with epidural electrical stimulation in the treatment of spinal cord injury,in this study,rats with moderate spinal cord contusion injury were intrathecally infused with human umbilical cord blood mononuclear cells expressing recombinant genes VEGF165,GDNF,NCAM1 at 4 hours after spinal cord injury.Three days after injury,epidural stimulations were given simultaneously above the lesion site at C5(to stimulate the cervical network related to forelimb functions)and below the lesion site at L2(to activate the central pattern generators)every other day for 4 weeks.Rats subjected to the combined treatment showed a limited functional improvement of the knee joint,high preservation of muscle fiber area in tibialis anterior muscle and increased H/M ratio in gastrocnemius muscle 30 days after spinal cord injury.However,beneficial cellular outcomes such as reduced apoptosis and increased sparing of the gray and white matters,and enhanced expression of heat shock and synaptic proteins were found in rats with spinal cord injury subjected to the combined epidural electrical stimulation with gene therapy.This study presents the first proof of principle study of combination of the multisite epidural electrical stimulation with ex vivo triple gene therapy(VEGF,GDNF and NCAM)for treatment of spinal cord injury in rat models.The animal protocols were approved by the Kazan State Medical University Animal Care and Use Committee(approval No.2.20.02.18)on February 20,2018.
基金grants from Sci-entific Research Fund of theMinistry of Health, No.20040801 Shanghai Ris-ing-Star Program of Technologi-cal Committee, No.05QMX1438
文摘BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can nourish nerve, postpone muscular atrophy, and help the postoperative neuromuscular function. OBJECTIVE: To observe the effects of low-frequency pulse percutaneous electric stimulation on the functional recovery of postoperative patients with peripheral nerve injury, and quantitatively evaluate the results of electromyogram (EMG) examination before and after treatment. DESIGN : A retrospective case analysis SETTING: The Sixth People's Hospital affiliated to Shanghai Jiaotong University PARTICIPANTS: Nineteen postoperative inpatients with peripheral nerve injury were selected from the De- partment of Orthopaedics, the Sixth People's Hospital affiliated to Shanghai Jiaotong University from June 2005 to January 2006, including 13 males and 6 females aged 24-62 years with an average of 36 years old. There were 3 cases of brachial plexus nerve injury, 3 of median nerve injury, 7 of radial nerve injury, 3 of ul- nar nerve injury and 3 of common peroneal nerve injury, and all the patients received probing nerve fiber restoration. Their main preoperative manifestations were dennervation, pain in limbs, motor and sensory disturbances. All the 19 patients were informed with the therapeutic program and items for evaluation. METHODS: ① Low-frequency pulse percutaneous electric stimulation apparatus: The patients were given electric stimulation with the TERESA cantata instrument (TERESA-0, Shanghai Teresa Health Technology, Co., Ltd.). The patients were stimulated with symmetric square waves of 1-111 Hz, and the intensity was 1.2-5.0 mA, and it was gradually adjusted according to the recovered conditions of neural regeneration following the principle that the intensity was strong enough and the patients felt no obvious upset. They were treated for 4- 24 weeks, 10-30 minutes for each time, 1-3 times a day, and 6 weeks as a course. ② EMG examination was applied to evaluate the recoveries of recruitment, motor conduction velocity (MCV) and sensory conduction velocity (SCV) before and after treatment. The patients were examined with the EMG apparatus (DIS- A2000C, Danmark) before and after the treatment of percutaneous electric stimulation. ③Standards for evaluating the effects included cured (complete recovery of motor functions, muscle strength of grade 5, no abnormality in EMG examination), obviously effective [general recovery of motor function, muscle strength of grade 4, no or a few denervation potentials, motor conduction velocity (MCV) and sensory conduction velocity (SCV)], improved (partial recovery of motor function, muscle strength of grade 3, denervation potentials and reinneration potentials, slowed MCV and SCV, invalid (no obvious changes of motor function). MAIN OUTCOME MEASURES: ① Ameliorated degree of the nerve function of the postoperative patients with peripheral nerve injury treated with percutaneous electric stimulation; ② Changes of EMG examination before and after treatment. RESULTS: All the 19 postoperative patients with peripheral nerve injury were involved in the analysis of results. ① Comparison of nerve function before and after treatment in 19 patients with peripheral nerve injury of different sites: For the patients with radial nerve injury (n=7), the nerve functions all completely recovered after 8-week treatment, and the cured and obvious rate was 100% (7/7); For the patients with brachial plexus nerve injury (n=3), 1 case had no obvious improvement, and the cured and obvious rate was 67% (2/3); For the patients with common peroneal nerve injury (n=3), the extension of foot dorsum generally recovered in 1 case of nerve contusion after 4-week treatment, and the cured and obvious rate was 67% (2/3); For the patients with median nerve injury (n=3), muscle strength was obviously recovered, and the cured and obvious rate was 100% (3/3); For the patients with ulnar nerve injury (n=3), 1 case only had recovery of partial senses, and the cured and obvious rate was 67% (2/3). Totally 9 cases were cured, 7 were obviously effective, 1 was improved, and only 2 were invalid. After 4 courses, the cured rate of damaged nerve function after four courses was 47% (9/19), and effective rate was 89% (17/19).② Comparison of EMG examination before and after treatment: Before and after percutaneous electric stimulation, he effective rates of recruitment, MCV and SCV were 89% (17/19), 58% (11/19), 47% (9/19) respectively, and there were extremely obvious differences (P〈 0.01). CONCLUSION: ①Low-frequency pulse percutaneous electric stimulation can improve the nerve function of postoperative patients with peripheral nerve injury of different sites, especially that the injuries of radial nerve and median nerve recover more obviously. ②Percutaneous electric stimulation can ameliorate the indexes of EMG examination, especially the recruitment, in postoperative patients with peripheral nerve injury.
文摘BACKGROUND The prominent symptoms of chronic pelvic pain syndrome(CPPS)are urogenital pain,lower urinary tract symptoms,psychological problems,and sexual dysfunction.Traditional pharmacological treatments have poor efficacy and more untoward reaction and complications.Magnetic vibration magnetoelectric therapy is a non-invasive form of physiotherapy.Nevertheless,its effectiveness in improving urinary discomfort and relieving pain in patients requires further exploration.AIM To investigate the clinical efficacy of the magnetic vibration magnetoelectric therapy instrument in the treatment of chronic prostatitis(CP)/CPPS.METHODS Seventy patients with CP/CPPS were collected from the outpatient clinic and ward of the Department of Male Medicine,Jiangsu Province Hospital of Traditional Chinese Medicine,and were treated with magnetic vibration magnetoelectric therapy once a day for a period of 14 d.National Institutes of healthchronic prostatitis symptom index(NIH-CPSI),international index of erectile function 5(IIEF-5),premature ejaculation diagnostic tool(PEDT),generalized anxiety disorder(GAD),patient health questionnaire,the pain catastrophizing scale(PCS)and traditional Chinese medicine syndrome(TCMS)scores were performed before and after treatment.RESULTS The total effective rate of treatment was 58.5%,and the total NIH-CPSI score,pain symptoms,voiding symptoms,quality of life,IIEF-5,PEDT,GAD,PCS and TCMS scores all decreased significantly(P<0.05).CONCLUSION Magnetic vibration magnetotherapy is effective in improving urinary discomfort,relieving pain,improving quality of life,improving sexual dysfunction and relieving negative emotions such as anxiety in patients with CP/CPPS.
文摘Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon’s model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves.
文摘Post-concussion syndrome (PCS) is a complex disorder with various symptoms. There is limited evidence to support that any intervention enhances recovery after a concussion. This pilot study aimed to examine the efficacy of neck paraspinal muscles electrical stimulation (ES) in conjunction with physical therapy (PT) on reducing the severity of post concussive symptoms. Twenty-four individuals with PCS were randomly assigned to the ES group (PT + ES) or the control group (PT only). Both groups received the intervention twice a week for eight weeks. Clinical measures including the Concussion Signs/Symptoms Checklist, balance error scoring system, King-Devick test, ImPACT, and the Standardized Assessment of Concussion were used to evaluate the symptoms. We investigated the recovery rate by calculating slopes of changes over time for each participant. A changing slope was derived by linearly fitting the symptoms severity over time with the initial severity score as the intercept. Significant overall improvement was observed in both groups after the interventions. There was no significant difference seen in total symptom recovery rate between two groups (-1.49 ± 1.59 versus -1.2 ± 1.56, p = 0.32). The cognitive symptoms recovery rate of the ES group was faster than the control group (-0.5 ± 0.49 and -0.13 ± 0.46 respectively, p = 0.04). Physical therapy targeting the cervical region is beneficial for persons with PCS. Moreover, peripheral electrical stimulation on the paraspinal muscles surrounding the neck region could potentially advance the cognitive function recovery of persons with PCS.
文摘Since the last decade deep brain stimulation has been proposed as an alternative treatment for patients who do not become seizure-free with the current pharmacological treatments and cannot undergo resective surgical procedure. However, the optimal stimulation parameters remain undetermined and active research in humans and animals is necessary. The present study was designed to investigate the effect of unilateral Low Frequency Stimulation (LFS) of hippocampus on seizure development by using the hippocampal rapid kindling method (hRK) in rats. We used male Wistar rats implanted with electrodes in the ventral hippocampus. All rats underwent hRK (biphasic square wave pulses, 20 Hz for 10 seconds) during three consecutive days (twelve stimulations per day). The control group (hRK;n = 6) received only RK stimulus, while the treated group (LFS-hRK;n = 8) received also LFS (biphasic square wave pulses, 1 Hz for 30 seconds) immediately before the RK stimulus, during three consecutive days. At the end of behavioral testing on day 3, 62% (P < 0.05) of the animals receiving LFS treatment were still not fully kindled staying in stages 0-III (P < 0.01). The number of stimulations needed to achieve generalized seizures (stage IV-V of Racine scale) was significantly higher (P < 0.05) in the LFS group with respect to control group. No significant differences in the cumulative daily afterdischarge duration were observed between both groups. These findings suggest that preemptive LFS can significantly decrease the incidence of hippocampus-kindled seizures and delay the progression and secondary generalization of focal seizures.
基金This study was supported by National Key R&D Program of China(Grant No.2017YFC0111202)(Z Xu)National Natural Science Foundation of China(Grant No.31800871)(Z Xu)Shenzhen Science and Technology Research Program(Grant No.JCYJ20170818163342873)(Z Xu).
文摘Effective and safe electrical stimulation of the retinal ganglion cells is at the heart of retinal prosthesis design.However,the effectiveness and safety demand of the electrical stimulation is often at odds against each other.Besides,the nerve fiber layer above retinal ganglion cells limits the spatial resolution of stimulation.Also,current retinal prosthesis still cannot selectively activate the ON or OFF visual pathways,thus cannot relay the correct luminance information to the brain.With decades of development,the stimulation protocol for retinal implants began to tackle these problems.We believe that a novel design of electrical stimulation scheme,combined with gene therapy technique,can improve the selectivity and spatial resolution of retinal implants and further lower the damage caused by electric stimulation.
基金funded in part by the Coordination of Improvement of Higher Level Personnel—Brazil(CAPES)—Finance Code 001by the National Council of Scientific and Technological Development—Brazil(CNPq)—Doctorate GD
文摘Intensive care units’ acquired muscle weakness is present in approximately 50% of the patients. Although active muscle training can attenuate weakness, a large proportion of critical patients cannot participate in any active mobilization. Neuromuscular electrical stimulation may be an alternative strategy to reverse muscle weakness. The objective of the study was to review the scientific publications on the use of neuromuscular electrical stimulation and its parameters and the main results in patients hospitalized in intensive care units. This is an integrative review surveying studies in online databases. The studies were selected from the following descriptors: neuromuscular electrical stimulation AND parameters AND intensive care units AND muscle weakness. The inclusion criteria included articles that addressed the topic of neuromuscular electrical stimulation and the parameters used in patients admitted to intensive care units, aged 18 years or older. Exclusion criteria were studies involving animals, case reports, letters to the editor and book chapters. The search comprised articles in the Portuguese, English and Spanish languages from January 2013 to March 2019. Of the 185 articles identified, nine met the eligibility criteria. The studies were evaluated assessing the level of evidence, and the relevant information was presented in the table and discussed. The parameters of the neuromuscular electrical stimulation employed in the studies showed positive results for the maintenance of strength and muscle mass. There was evidence of benefits in the local and systemic microcirculation, potentially mobilizing endothelial stem cells, to prevent atrophy, to reduce mechanical ventilation time and stay in intensive care unit;and when incorporated into the usual physiotherapy care, proved to be more effective than usual care. Its use is safe and viable in critically ill patients.
文摘Objective: To investigate the application value of electrostimulation biofeedback therapy in combination with vaginal dumbbell therapy to postpartum pelvic floor dysfunction. Methods: Retrospective analysis of 200 cases of postpartum pelvic floor dysfunction patients discharged from the hospital from January 2016 to March 2019 as study subjects who were excluded other underlying diseases and were randomly divided into two groups of 100 cases per group, using electrostimulation biofeedback therapy combined vaginal dumbbell therapy as a treatment group. The treatment of electrostimulation biofeedback therapy in combination with kegel was treated as a control group. Then the curative effects of the two groups were compared and statistically analyzed. Results: There was no significant difference in EMG value of postpartum pelvic floor treatment, type I muscle strength, type II muscle strength, muscle type I fatigue, type II fatigue and POP-Q detection results between the two groups before treatment, p > 0.05. There were significant differences in type I muscle strength, type II muscle strength and muscle type I fatigue between the pelvic floor muscles and the muscles at the end of the treatment day, the sixth month and one year after treatment, p ?There was no statistically significant difference at?the end of muscle type II fatigue?treatment day, p > 0.05;while after the treatment of six months and one year, the difference was statistically significant, p 0.05. In addition, the treatment group and the control group were compared before and after treatment, the difference of myoelectric potential value, pelvic floor muscle type I muscle strength, type II muscle strength, muscle type I fatigue degree, type II fatigue degree and POP-Q test result were significant, and the changes in the indicators before and after treatment in the treatment group were significantly higher than the control group. Comparison of urinary incontinence between the two groups before and after treatment, the difference between pre-treatment and the end of treatment day was not statistically significant, p > 0.05;there was significant difference between half a year and one year after treatment (p 0.05, respectively). Comparing?the satisfaction with sexual life after the time of treatment day, half a year and one year after the end of treatment, the difference was statistically significant (p ?Conclusion: Electrical stimulation biofeedback therapy combined with vaginal dumbbell therapy has a good effect in the treatment of postpartum pelvic floor dysfunction, and it is worthy of popularization and application.
基金supported by the National Natural Science Foundation of China,No.30973165,81372108a grant from Clinical Research 5010 Program Mission Statement of Sun Yat-Sen University,China,No.2014001
文摘Gait disorders drastically affect the quality of life of stroke survivors,making post-stroke rehabilitation an important research focus.Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment.However,a large inter-individual variability in the response to noninvasive brain stimulation interventions has been increasingly recognized.We first review the neurophysiology of human gait and post-stroke neuroplasticity for gait recovery,and then discuss how noninvasive brain stimulation techniques could be utilized to enhance gait recovery.While post-stroke neuroplasticity for gait recovery is characterized by use-dependent plasticity,it evolves over time,is idiosyncratic,and may develop maladaptive elements.Furthermore,noninvasive brain stimulation has limited reach capability and is facilitative-only in nature.Therefore,we recommend that noninvasive brain stimulation be used adjunctively with rehabilitation training and other concurrent neuroplasticity facilitation techniques.Additionally,when noninvasive brain stimulation is applied for the rehabilitation of gait impairment in stroke survivors,stimulation montages should be customized according to the specific types of neuroplasticity found in each individual.This could be done using multiple mapping techniques.
文摘AIM:To investigate normal value range of low-frequent repeated nerve stimulation(RNS):whether different low-frequent stimulation and different muscles have different normal value range.METHODS:Low-frequent (3c /s and 5c /s)RNS of 30healthy people and 27myasth enia gravis(MG)patients were test.RESULTS:Superior limit of amplitude of wave a ttenuation value of low-frequent RNS(x±2.5s)of different muscles(orbicularis oculi muscle,deltoid muscle and abductor muscle of little finger)of healthy people was 5.45%-7.55%.According to our normal value standard,RNS positive rate of MG group was 85%;according to the current criteria(amplitude of wave attenuation value >10%),positive rate of MG group was 70%,th ere was no apparent difference in RNS positive rate(P>0.1).Some labs adopted the criteria that amplitude of wave attenuation value >15%,ac-cording to this criteria,positive r ate of MG group was 51%.Compared with positive rate(85%)obtained according to our criteria,there was apparent difference(P<0.01).CONCLUSION:Each labs should establish their own normal value standard according to difference muscle and different f re-quent.If adopt universal standard,amplitude of wave attenuation value8%or 10%was suggested.
文摘The mounting endemic of prescription iatrogenic opioid dependence in pain patients provoked this treatise about an alternative method that can be used to treat pain, improve function and reduce the risk of opioid dependence. It is well known that as well as the side effects reported for chronic opioid therapy, genetically predisposed individuals are at risk for opioid dependence. We propose the use of the Genetic Addiction Risk Score (GARS) assessment to identify patients early in treatment who should avoid narcotic pain medications. Primarily, this review will be an exploration of the mechanisms of action of an electrotherapeutic alternative to narcotic treatment that can be used to augment tissue healing and reduce the pain associated with human injuries and neuropathies. This particular electrotherapeutic device was developed at the Electronic Waveform Laboratory in Huntington Beach, California and is called the H-Wave? device. The primary effect of the H-Wave?device is stimulation (HWDS) of small diameter fibers of “red-slow-twitch” skeletal muscle. Mechanisms of action of HWDS have been investigated in both animal and human studies. They include edema reduction, induction of nitric oxide dependent augmented microcirculation and angiogenesis, small muscle contraction that eliminates transcapillary fluid shifts, reducing the painful effects of tetanizing fatigue and gradual loading of healing injured muscle tissue that helps repair and remodeling. A recent metaanalysis found a moderate-to-strong-positive effect of the HWDS in providing pain relief, reducing the requirement for pain medication, with the most robust effect being increased functionality. We are proposing that GARS can be used to identify those at risk of developing opioid dependence and that the need for opioid analgesia can be reduced by use of this electro therapeutic alternative to opioid analgesia in the treatment of pain and injuries.
文摘Epilepsy is one of the most common serious neurological disorders. Pharmacoresistant epilepsy patients are poorly controlled or their seizures are refractory to drug treatment. Resective surgery is frequently a promising therapy in this population, however, not all the patients meet the eligibility criteria for the surgical treatment. Deep brain stimulation has been investigated in clinical studies and animal studies as an alternative treatment, but the optimal stimulation parameters remain an issue. The present study was designed to investigate the effect of unilateral high-frequency stimulation (HFS) of hippocampus on seizure development by using the hippocampal rapid kindling method (hRK) in rats, and compared the results with those of low-frequency stimulation previously published by our group. We used male Wistar rats implanted with electrodes in the ventral hippocampus. All rats underwent hRK (biphasic square wave pulses, 20 Hz for 10 seconds) during three consecutive days (twelve stimulations per day). The control group (hRK;n = 7) received only RK stimulus, while the treated group (HFS-hRK;n = 9) received also HFS (biphasic square wave pulses, 130 Hz for 30 seconds) immediately before the RK stimulus, during three consecutive days. At the end of behavioral testing 78% (p 0.01) of the animals receiving HFS treatment were still not fully kindled staying in stages 0 -III (p 0.01). HFS group needed a higher number of stimulations to achieve stage III (p 0.05) with respect to control group. However, no significant differences in the cumulative daily afterdischarge duration were observed. HFS did not present significant differences compared with LFS in any of studied parameters. The findings suggest that unilateral HFS applied on hippocampus effectively inhibited the epileptogenic process induced by hippocampal rapid kindling. According to the comparative results about hippocampal rapid kindled animals stimulated with HFS and LFS (5 Hz), we found no conclusive information on which treatment is most efficient.
基金National Key Research and Development Program of China,Grant/Award Numbers:2022YFB3205602,2022YFB3804703National Natural Science Foundation of China,Grant/Award Numbers:61875015,T2125003+3 种基金Beijing Natural Science Foundation,Grant/Award Numbers:JQ20038,L212010The Fundamental Research Funds for the Central Universities,Grant/Award Number:E0EG6802X2the Scientific Employment Stimulus program,Grant/Award Number:2021.01807.CEECINDMaria de Sousa award,Grant/Award Number:(53/2021)。
文摘Electrical stimulation(ES),as one of the physical therapy modalities for tumors,has attracted extensive attention of researchers due to its promising efficacy.With the continuous development of material science,nanotechnology,and micro/nano processing techniques,novel electroactive nanomaterials and delicately designed devices have emerged to realize innovative ES therapies,which provide more possibilities and approaches for tumor treatment.Meanwhile,exploring the molecular biological mechanisms underlying different ES modalities affecting tumor cells and their immune microenvironment is also an unresolved hotspot emerging from the current biomedical engineering research.Focusing on the above research interests,in this review,we systematically summarized the effects of different ES parameters on the subcellular structure of tumor cells and the tumor immune microenvironment(TIME)in conjunction with the involved signaling pathways.In addition,we also reviewed the latest progress in novel self-powered devices and electroactive nanomaterials for tumor therapy.Finally,the prospects for the development of electrostimulation tumor therapy are also discussed,bringing inspiration for the development of new physical therapy strategies in the future.