Analyzing observations of wintertime air temperature in both indoor and outdoor surroundings in Kunming, a city lying in low latitudes, characteristics of temperature and humidity have been studied for the interior of...Analyzing observations of wintertime air temperature in both indoor and outdoor surroundings in Kunming, a city lying in low latitudes, characteristics of temperature and humidity have been studied for the interior of rooms facing north-south under different weather conditions. Significant warming effect has been identified in terms of lowest and daily-mean indoor temperature in the area of Kunming. The heating amplitude ranges from 7.7C to 10.0C and from 4.6C to 5.8C for the interior part of rooms facing the south and from 4.6C to 7.0C and from 1.3C to 4.4C for the interior part of rooms facing the north, respectively for the two elements. The highest air temperature is higher indoor than outdoor for rooms facing the south, but otherwise is usually true for rooms facing the north. Additional findings point out that buildings not only help maintain relatively warm indoor temperature but delay its variation. The diurnal cycle of temperature indoor is smaller and ranges by 40% ~ 48% for south-facing rooms, and by 20% ~ 30% for north-facing rooms, than outdoor, and the highest temperature is about 2 hours late inside the room than outside. It shows how inertly indoor temperature varies. The work also finds that relative humidity is less indoor in southward rooms than in northward ones and difference is the largest on fine days but the smallest when it is overcast. For the diurnal variation, the indoor relative humidity is large at nighttime with small amplitude but small during daytime with large amplitude. The above-presented results can be served as scientific foundation for more research on climate in low-latitude cities and rational design of urban architectures.展开更多
Green heart is an important part of urban ecosystem and urban public space. Due to the limitation of geography, hydrology, soil, climate, transportation and other factors, valley cities in the Loess Plateau have certa...Green heart is an important part of urban ecosystem and urban public space. Due to the limitation of geography, hydrology, soil, climate, transportation and other factors, valley cities in the Loess Plateau have certain particularities in the construction of their green hearts. Based on the connotation and characteristics of green heart, a typical valley city of Shenmu in Shaanxi Province was selected for research, and explored the adaptive design strategy of green heart in the city combining with the planning and design of the Central Park in Shenmu, so as to provide a reference point for the construction of green heart in the same type of city.展开更多
In this study, we used high-resolution optical satellite images on the Google Earth platform to map large-scale landslides in Xianyang City, Shaanxi Province, China. After mapping, a comprehensive and detailed large-s...In this study, we used high-resolution optical satellite images on the Google Earth platform to map large-scale landslides in Xianyang City, Shaanxi Province, China. After mapping, a comprehensive and detailed large-scale landslide inventory that contains 2 924 large-scale landslides was obtained. We analyzed the spatial distribu-tion of landslides with seven influencing factors, including elevation, slope angle, aspect, curvature, lithology, distance to a river, and distance to the fault. Landslide Number, Landslide Area, Landslide Number Density(LND), and Landslide Area Percentage(LAP) were selected as indexes for the spatial distribution analysis. The results show that the number and area of landslides in the elevation range of 1 000–1 200 m is the highest. The highest number of landslides was observed in the slope angle of 25°–30°. North-facing slopes are prone to sliding. The area and number of landslides are the largest when the slope curvature ranges from-1.28 to 0. The LND and LAP reach their maxima when the slope curvature is less than-2.56. Areas covered by the Tertiary stratum with weakened fine-grained sandstone and siltstone show the highest LND and LAP values. Regarding distance to a river, the LAP peaks in the range of 300–600 m, whereas the LND peaks in an area larger than 2100 m. The values of LND and LNP rise as the distance from the faults increases, except for the locations 30 km away from active faults. This phenomenon is because active faults in this area pass through the plain areas, while landslides mostly occur in mountainous areas. The cataloging of landslide development in Xianyang City provides a significant scientific foundation for future research on landslides. In addition, the spatial distribution results are useful for landslide hazard prevention decisions and provide valuable references in this area.展开更多
利用昆明站1991-2020年近30年逐日降水数据计算昆明雨季(5-10月)的起止时期,进一步确定昆明市雨季的长短。又基于云南省和昆明市的统计年鉴数据,使用年末总人口、城市建成区面积、城镇化率、人均GDP等城市发展因子确定昆明的城市发展进...利用昆明站1991-2020年近30年逐日降水数据计算昆明雨季(5-10月)的起止时期,进一步确定昆明市雨季的长短。又基于云南省和昆明市的统计年鉴数据,使用年末总人口、城市建成区面积、城镇化率、人均GDP等城市发展因子确定昆明的城市发展进程,将昆明市的城市发展进程划分为缓慢发展期(1991-2003年)和快速发展期(2004-2020年),进而分析比较两段时期中昆明市雨季长短的特征和差异,采用统计分析、小波分析和M-K突变检验等综合分析方法,系统分析了昆明市雨季长短的时间变化特征,并用灰色关联度分析方法分析了昆明市雨季长短与城市发展的关联性。结果表明,1991-2020年昆明市的雨季开始日呈逐渐偏晚的趋势,而雨季结束日呈逐渐偏早的趋势,总体上雨季长度呈逐渐缩短的趋势;小波系数分析结果显示,在8年以下的时间尺度上,昆明市雨季长短变化的周期不存在明显的规律性,在17年时间尺度上的周期变化明显,呈偏短-偏长-偏短-偏长-偏短的5个循环交替,2003-2008年、 2014-2017年雨季增长,1991-2002年、 2009-2012年、 2018-2020年雨季缩短,2018-2020年等值线未闭合说明还有进一步缩短的趋势。通过M-K检验表明昆明市的雨季长短在1991-2020年间出现4次突变,分别发生在2002年、 2008年、 2012年和2017年。从昆明城市发展与雨季长短的关系来看,昆明城市发展缓慢期的雨季长短的变化趋势较为平稳,而城市发展快速期2004年以后,昆明市雨季长度缩短的变化明显,并随着城市发展进程的加快其极端波动性更加明显。运用SPSS(Statistical Product and Service Solutions)软件对未来10年昆明的雨季长短进行预测,结果显示未来10年昆明雨季长短将持续偏短的趋势。在灰色关联度分辨率为0.5时,表征城市发展进程的4个因子对昆明雨季长短变化均产生不同程度影响,其关联度系数都在0.70以上,表明昆明城市发展与雨季长短显著关联性,其中影响最大的因子是年末总人口,最小为人均GDP,灰色关联度分别为0.88和0.70,属于高度关联和显著关联。对4个因子的关联系数进行排序为:年末总人口>城镇化率>城市建成区面积>人均GDP。展开更多
Based on the composite analysis method, 12 rainstorms triggered by Bay of Bengal storms (shortened as B-storms hereafter) across the whole province of Yunnan were studied, and some interesting results of rain and circ...Based on the composite analysis method, 12 rainstorms triggered by Bay of Bengal storms (shortened as B-storms hereafter) across the whole province of Yunnan were studied, and some interesting results of rain and circulation characteristics influenced by the storms were obtained for low-latitude plateau. Usually, when a rainstorm weather occurs in low-latitude plateau, the B-storm center locates in the central, east or north parts of the Bay of Bengal. At the same time, the subtropical high ridge moves to 15°N– 20°N and the west ridge point moves to the Indo-china Peninsula from the South China Sea and the low-latitude plateau is controlled by southwest air streams coming from the front of the trough and the periphery of the subtropical high. The southwest low-level jet stream from the east side of the bay storm has great effect on heavy rains. On the one hand, the southwest low-level jet stream is playing the role of transporting water vapor and energy. On the other hand, the southwest low-level jet stream is helpful to keep essential dynamical condition. From the analysis of the satellite cloud imagery, it is found that mesoscale convection cloud clusters will keep growing and moving into the low-latitude plateau to cause heavy rains when a storm forms in the Bay of Bengal.展开更多
文摘Analyzing observations of wintertime air temperature in both indoor and outdoor surroundings in Kunming, a city lying in low latitudes, characteristics of temperature and humidity have been studied for the interior of rooms facing north-south under different weather conditions. Significant warming effect has been identified in terms of lowest and daily-mean indoor temperature in the area of Kunming. The heating amplitude ranges from 7.7C to 10.0C and from 4.6C to 5.8C for the interior part of rooms facing the south and from 4.6C to 7.0C and from 1.3C to 4.4C for the interior part of rooms facing the north, respectively for the two elements. The highest air temperature is higher indoor than outdoor for rooms facing the south, but otherwise is usually true for rooms facing the north. Additional findings point out that buildings not only help maintain relatively warm indoor temperature but delay its variation. The diurnal cycle of temperature indoor is smaller and ranges by 40% ~ 48% for south-facing rooms, and by 20% ~ 30% for north-facing rooms, than outdoor, and the highest temperature is about 2 hours late inside the room than outside. It shows how inertly indoor temperature varies. The work also finds that relative humidity is less indoor in southward rooms than in northward ones and difference is the largest on fine days but the smallest when it is overcast. For the diurnal variation, the indoor relative humidity is large at nighttime with small amplitude but small during daytime with large amplitude. The above-presented results can be served as scientific foundation for more research on climate in low-latitude cities and rational design of urban architectures.
基金Sponsored by Humanities and Social Sciences Project of Northwest A&F University(2014RWYB24,2015RWYB40)
文摘Green heart is an important part of urban ecosystem and urban public space. Due to the limitation of geography, hydrology, soil, climate, transportation and other factors, valley cities in the Loess Plateau have certain particularities in the construction of their green hearts. Based on the connotation and characteristics of green heart, a typical valley city of Shenmu in Shaanxi Province was selected for research, and explored the adaptive design strategy of green heart in the city combining with the planning and design of the Central Park in Shenmu, so as to provide a reference point for the construction of green heart in the same type of city.
基金This study was supported by the National Institute of Natural Hazards,Ministry of Emergency Management of China(ZDJ 2021-12)the National Key Research and Development Program of China(2021YFB3901205).
文摘In this study, we used high-resolution optical satellite images on the Google Earth platform to map large-scale landslides in Xianyang City, Shaanxi Province, China. After mapping, a comprehensive and detailed large-scale landslide inventory that contains 2 924 large-scale landslides was obtained. We analyzed the spatial distribu-tion of landslides with seven influencing factors, including elevation, slope angle, aspect, curvature, lithology, distance to a river, and distance to the fault. Landslide Number, Landslide Area, Landslide Number Density(LND), and Landslide Area Percentage(LAP) were selected as indexes for the spatial distribution analysis. The results show that the number and area of landslides in the elevation range of 1 000–1 200 m is the highest. The highest number of landslides was observed in the slope angle of 25°–30°. North-facing slopes are prone to sliding. The area and number of landslides are the largest when the slope curvature ranges from-1.28 to 0. The LND and LAP reach their maxima when the slope curvature is less than-2.56. Areas covered by the Tertiary stratum with weakened fine-grained sandstone and siltstone show the highest LND and LAP values. Regarding distance to a river, the LAP peaks in the range of 300–600 m, whereas the LND peaks in an area larger than 2100 m. The values of LND and LNP rise as the distance from the faults increases, except for the locations 30 km away from active faults. This phenomenon is because active faults in this area pass through the plain areas, while landslides mostly occur in mountainous areas. The cataloging of landslide development in Xianyang City provides a significant scientific foundation for future research on landslides. In addition, the spatial distribution results are useful for landslide hazard prevention decisions and provide valuable references in this area.
文摘利用昆明站1991-2020年近30年逐日降水数据计算昆明雨季(5-10月)的起止时期,进一步确定昆明市雨季的长短。又基于云南省和昆明市的统计年鉴数据,使用年末总人口、城市建成区面积、城镇化率、人均GDP等城市发展因子确定昆明的城市发展进程,将昆明市的城市发展进程划分为缓慢发展期(1991-2003年)和快速发展期(2004-2020年),进而分析比较两段时期中昆明市雨季长短的特征和差异,采用统计分析、小波分析和M-K突变检验等综合分析方法,系统分析了昆明市雨季长短的时间变化特征,并用灰色关联度分析方法分析了昆明市雨季长短与城市发展的关联性。结果表明,1991-2020年昆明市的雨季开始日呈逐渐偏晚的趋势,而雨季结束日呈逐渐偏早的趋势,总体上雨季长度呈逐渐缩短的趋势;小波系数分析结果显示,在8年以下的时间尺度上,昆明市雨季长短变化的周期不存在明显的规律性,在17年时间尺度上的周期变化明显,呈偏短-偏长-偏短-偏长-偏短的5个循环交替,2003-2008年、 2014-2017年雨季增长,1991-2002年、 2009-2012年、 2018-2020年雨季缩短,2018-2020年等值线未闭合说明还有进一步缩短的趋势。通过M-K检验表明昆明市的雨季长短在1991-2020年间出现4次突变,分别发生在2002年、 2008年、 2012年和2017年。从昆明城市发展与雨季长短的关系来看,昆明城市发展缓慢期的雨季长短的变化趋势较为平稳,而城市发展快速期2004年以后,昆明市雨季长度缩短的变化明显,并随着城市发展进程的加快其极端波动性更加明显。运用SPSS(Statistical Product and Service Solutions)软件对未来10年昆明的雨季长短进行预测,结果显示未来10年昆明雨季长短将持续偏短的趋势。在灰色关联度分辨率为0.5时,表征城市发展进程的4个因子对昆明雨季长短变化均产生不同程度影响,其关联度系数都在0.70以上,表明昆明城市发展与雨季长短显著关联性,其中影响最大的因子是年末总人口,最小为人均GDP,灰色关联度分别为0.88和0.70,属于高度关联和显著关联。对4个因子的关联系数进行排序为:年末总人口>城镇化率>城市建成区面积>人均GDP。
基金Project of Key Science and Technology and High-tech of Yunnan Province
文摘Based on the composite analysis method, 12 rainstorms triggered by Bay of Bengal storms (shortened as B-storms hereafter) across the whole province of Yunnan were studied, and some interesting results of rain and circulation characteristics influenced by the storms were obtained for low-latitude plateau. Usually, when a rainstorm weather occurs in low-latitude plateau, the B-storm center locates in the central, east or north parts of the Bay of Bengal. At the same time, the subtropical high ridge moves to 15°N– 20°N and the west ridge point moves to the Indo-china Peninsula from the South China Sea and the low-latitude plateau is controlled by southwest air streams coming from the front of the trough and the periphery of the subtropical high. The southwest low-level jet stream from the east side of the bay storm has great effect on heavy rains. On the one hand, the southwest low-level jet stream is playing the role of transporting water vapor and energy. On the other hand, the southwest low-level jet stream is helpful to keep essential dynamical condition. From the analysis of the satellite cloud imagery, it is found that mesoscale convection cloud clusters will keep growing and moving into the low-latitude plateau to cause heavy rains when a storm forms in the Bay of Bengal.