Objective: To study the effect of low-level laser irradiation (LLLI) combined with ferulic acid on the osteoblast differentiation and maturation as well as osteogenesis signaling pathway expression. Methods: The crani...Objective: To study the effect of low-level laser irradiation (LLLI) combined with ferulic acid on the osteoblast differentiation and maturation as well as osteogenesis signaling pathway expression. Methods: The cranium was collected from the SD rats born within 24 h, osteoblasts were separated, cultured and then divided into control group, ferulic acid group, LLLI group, ferulic acid + LLLI group, and the expression osteoblast differentiation markers, proliferation molecules and signaling pathway molecules were detected after continuous treatment with different conditions for three days. Results: 3 d after treatment, the Bax and Bid mRNA expression in ferulic acid group, LLLI group and ferulic acid + LLLI group of cells were significantly lower than those in control group while Bcl-2, CyclinD1, E2F, Col-I, OC and ALP mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were significantly higher than those in control group;Bax and Bid mRNA expression in ferulic acid + LLLI group of cells were significantly lower than those in ferulic acid group and LLLI group while Bcl-2, CyclinD1, E2F, Col-I, OC and ALP mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were significantly higher than those in ferulic acid group and LLLI group;Col-I, OC, ALP, Bax, Bid, Bcl-2, CyclinD1 and E2F mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were not significantly different between ferulic acid group and LLLI group. Conclusion: Low-level laser irradiation (LLLI) combined with ferulic acid can promote osteoblast differentiation and maturation and activate osteogenesis signaling pathway.展开更多
BACKGROUND Lumbar radiculopathy spondylosis is a relatively common orthopedic disease with a high incidence rate.It most commonly occurs in the lumbar 4-5 and lumbar 5-sacral 1 vertebrae,which account for approximatel...BACKGROUND Lumbar radiculopathy spondylosis is a relatively common orthopedic disease with a high incidence rate.It most commonly occurs in the lumbar 4-5 and lumbar 5-sacral 1 vertebrae,which account for approximately 95%of cases.It mostly occurs in people aged 30-50 years old and greatly affects their quality of life.AIM To determine the effect of triple-voltage acupuncture combined with helium-neon laser irradiation on the quality of care and improvement of symptoms in patients with lumbar radiculopathy spondylolisthesis.METHODS In this study,we selected 120 patients with lumbar radiculopathy spondylosis who were treated at our hospital between June 2019 to June 2020.The patients were divided into control and observation groups according to the random number table method,with 60 patients in each group.Patients in the observation group were treated with three-volt moxibustion combined with helium-neon laser irradiation,and those in the control group were treated with lumbar traction.After 1 month of treatment,the lumbar pain scores,lumbar spine motor functions,clinical treatment effects,and nursing satisfaction of the two groups were compared.RESULTS The results showed that acupuncture combined with laser irradiation significantly improved the patients'clinical symptoms,i.e.,reduced their low back pain,significantly lower numerical rating scale pain scores in the observation group than in the control group,and better lumbar spine motility than in the control group,compared to lumbar traction.In addition,they were cared for.The treatment effectiveness rate of the observation group was 95.5%,which was significantly higher than that of the control group(81.67%).Satisfaction with care was higher than 90 points in both groups,but the difference was not statistically significant.CONCLUSION Our study provides a clinical rationale for the future treatment of patients with lumbar spine disease.However,further extensive research is needed for validation.展开更多
[ Objective ]The aim of this study was to discuss the feasibility of breeding cabbage with high Vc by 532 nm laser.[ Method ] With the material of cabbage, the embryo of cabbage seeds was irradiated by frequency doubl...[ Objective ]The aim of this study was to discuss the feasibility of breeding cabbage with high Vc by 532 nm laser.[ Method ] With the material of cabbage, the embryo of cabbage seeds was irradiated by frequency doubled Nd :YAG laser with different power densities and time, and the effects of laser mode on functional leaf area, chlorophyll and Vc contents in cabbage seedlings were also studied. [Result] The results showed that functional leaf area and chlorophyll content were related to laser power density and time when laser power density was 2 -20 mW/mm^2, while the optimal effect was observed at 14 mW/mm^2 for 1 min. The content of Vc in cabbage seedlings was related to dosage of laser irradiation when irradiating time ranged from 1 to 5 min, and the optimal effect was observed at 2.8 J (20 mW/mm^2, 3 min). [Conclusion] Irradiating the embryo of cabbage seeds with proper irradiation dosage of 532 nm laser can increase its effect on the Vc content significantly.展开更多
Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the...Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cel Is were irradiated (660 nm) daily with doses of O, 1, 2 or 4 J .cm-2. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J.cm-2 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J.cm-2 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration.展开更多
Stimulated photoluminescence (PL) emission has been observed from an oxide structure of silicon when optically excited by a radiation of 514nm laser. Sharp twin peaks at 694 and 692nm are dominated by stimulated emi...Stimulated photoluminescence (PL) emission has been observed from an oxide structure of silicon when optically excited by a radiation of 514nm laser. Sharp twin peaks at 694 and 692nm are dominated by stimulated emission, which can be demonstrated by its threshold behaviour and linear transition of emission intensity as a function of pump power. The oxide structure is formed by laser irradiation on silicon and its annealing treatment. A model for explaining the stimulated emission is proposed, in which the trap states of the interface between an oxide of silicon and porous nanocrystal play an important role.展开更多
Oral submucous fibrosis (OSF) is a potentially malignant disorder that is characterized by a progressive fibrosis in the oral submucosa. Arecoline, an alkaloid compound of the areca nut, is reported to be a major ae...Oral submucous fibrosis (OSF) is a potentially malignant disorder that is characterized by a progressive fibrosis in the oral submucosa. Arecoline, an alkaloid compound of the areca nut, is reported to be a major aetiological factor in the development of OSF. Low-power laser irradiation (LPLI) has been reported to be beneficial in fibrosis prevention in different damaged organs. The aim of this study was to investigate the potential therapeutic effects of LPLI on arecoline-induced fibrosis. Arecoline- stimulated human gingival fibroblasts (HGFs) were treated with or without LPLI. The expression levels of the fibrotic marker genes alpha-smooth muscle actin (a-SMA) and connective tissue growth factor (CTGF/CCN2) were analysed by quantitative real- time reverse transcription polymerase chain reaction (RT-PCR) and western blots. In addition, the transcriptional activity of CCN2 was further determined by a reporter assay. The results indicated that arecoline increased the messenger RNA and protein expression of CCN2 and a-SMA in HGF. Interestingly, both LPLI and forskolin, an adenylyl cyclase activator, reduced the expression of arecoline-mediated fibrotic marker genes and inhibited the transcriptional activity of CCN2. Moreover, pretreatment with SQ22536, an adenylyl cyclase inhibitor, blocked LPLI's inhibition of the expression of arecoline-mediated fibrotic marker genes. Our data suggest that LPLI may inhibit the expression of arecoline-mediated fibrotic marker genes via the cAMP signalling pathway.展开更多
To understand the surface morphology evolution of fused silica induced by 10.6μm CO2 laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are u...To understand the surface morphology evolution of fused silica induced by 10.6μm CO2 laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are utilized to characterize the surface structure and roughness of the laser irradiated area. The results show that three typical surface morphologies and two typical hydrophilicity test images are observed at different laser powers and pulse durations. The correlations between surface temperature and surface morphology as well as hydrophilicity behaviours are presented. The different hydrophilicity behaviours are related to surface structures of the laser-induced crater and thermal diffusion area. The thermal diffusion length monotonously increases with increasing laser power and pulse duration. The crater width is almost determined by the laser beam size. The crater depth is more sensitive to the laser power and pulse duration than the crater width.展开更多
The laser irradiation effect on the SERS intensity for Ag film is discussed using crystal violet (CV) as a probe. The thickness of silver film,the etching time of the glass slide by gaseous hydrogen fluoride, and the ...The laser irradiation effect on the SERS intensity for Ag film is discussed using crystal violet (CV) as a probe. The thickness of silver film,the etching time of the glass slide by gaseous hydrogen fluoride, and the laser irradiation time for different amounts of CV on silver films were investigated. The laser burn out model was proposed to explain the dependence of the SERS intensity of CV on the laser irradiation time.展开更多
Systematic experiments about the antitumor effects of low energy laser irradiation combined with the traditional antitumor medicine of cyclophosphamide were conducted using the experimental model of mouse S180 ascite...Systematic experiments about the antitumor effects of low energy laser irradiation combined with the traditional antitumor medicine of cyclophosphamide were conducted using the experimental model of mouse S180 ascites sarcoma.The three groups of tumor bearing mice were irradiated upon the inner corners with the dosages of 11 00,14 67 and 22 00 J·cm -2 LELI respectively,and injected with CYT intraperitoneally to observe the changes of the survival time,the ascites growth speed,and the kinetic changes of immune functions.The survival times of the three groups of CYT/LELI combination were obviously longer than those of the tumor and CYT control groups.Correspondingly,the amounts of ascites,tumor cells densities and total tumor cells in CYT/LELI groups decreased significantly,while the death ratio of the tumor cells increased.Comparatively,the group of 22 00 J·cm -2 LELI combined with CYT showed the most ideal antitumor effects,and the life prolongation ratio was up to 53 20%.展开更多
Silver nanoparticles (AgNPs) were fabricated by repetitive irradiation of near ultraviolet (UV) nanosecond laser pulses (355 nm, 5 ns) in an aqueous solution of silver nitrate in the absence of stabilizing agents. A b...Silver nanoparticles (AgNPs) were fabricated by repetitive irradiation of near ultraviolet (UV) nanosecond laser pulses (355 nm, 5 ns) in an aqueous solution of silver nitrate in the absence of stabilizing agents. A broad absorption peak was observed in the visible region showing the formation of a variety of AgNPs in the solution. Among the variety of products, it was found that silver nanocubes (AgNCs) grew in size with longer laser irradiation time. The size of AgNCs also increased with higher laser intensity. The average size of AgNCs, investigated by a scanning electron microscope (SEM) was in the range of 75 - 200 nm. The number of reduced atoms in AgNCs as a function of laser intensity showed that the AgNCs are apparently produced by a four photon process, implying that the formation of dimer silver atoms is essential for the formation.展开更多
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and...The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.展开更多
We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the c...We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the chemical reaction of the femtosecond laser-induced structure change zone and hydrofluoric acid solution. The morphologies of the through micro-holes and micro-hole arrays are characterized by using scanning electronic microscopy, The effects of the pulse number on the depth and diameter of the holes are investigated. Honeycomb arrays of through micro-holes fabricated at different laser powers and pulse numbers are demonstrated.展开更多
We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolut...We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolution and precision calculations are used to resolve the ultrafast laser-induced anisotropic relaxations of the pressure components on the time-scale comparable to the intrinsic liquid density relaxation time. The magnitudes of the dynamic surface tensions are found being modulated sharply within picoseconds after the irradiation, due to the development of the nanometer scale non-hydrostatic regime behind the exterior atomic layer of the liquid surfaces.The reported novel regulation mechanism of the liquid surface stress field and the dynamic surface tension hints at levitating the manipulation of liquid surfaces, such as ultrafast steering the surface directional transport and patterning.展开更多
An opportunity to use laser radiation as a means to reduce negative aftermath of acute and prolonged exposure to ionizing radiation was checked. The mice were exposed to γ- rays of ^60Co (whole body irradiation) in...An opportunity to use laser radiation as a means to reduce negative aftermath of acute and prolonged exposure to ionizing radiation was checked. The mice were exposed to γ- rays of ^60Co (whole body irradiation) in the dose of 7 Gy (the transitional clinical form of the acute radiation sickness). The dose rate at acute irradiation was 1.14 Gy/min, and at prolonged exposure, 0.027 Gy/min. Laser radiation in the dose l mJ/cm^2 was used to irradiate only the back of a mouse. First, the mice were exposed to γ-radiation, then to laser radiation. The time interval between two types of irradiation did not exceed 30 min. It was shown that the radiation protection of mice with laser radiation is possible at exposure to ionizing radiation in a wide dose interval and can reduce negative after-effects of both the acute and prolonged radiation exposure.展开更多
Objective:To investigate the effect of Kangfuxin Solution(康复新液)combined with low-level laser therapy(LLLT)on cytokines and immune function in patients with radiation-induced oral mucositis.Methods:There were 84 na...Objective:To investigate the effect of Kangfuxin Solution(康复新液)combined with low-level laser therapy(LLLT)on cytokines and immune function in patients with radiation-induced oral mucositis.Methods:There were 84 nasopharyngeal carcinoma patients with oral mucositis after intensity-modulated radiation therapy(IMRT)were randomly divided into the control group(CG)and the observation group(OG),with 42 cases in each group.The CG was given LLLT,and the OG was treated with Kangfuxin Solution in addition to LLLT for 10 consecutive days.The healing time of oral mucosa,mucositis grading,oral pain scores,cytokines(interleukin-6,interleukin-1βand tumor necrosis factor-α)and T lymphocyte subsets were compared between the 2 groups before and after treatment.Results:The healing time of oral mucosa in the OG was(6.8±1.4)d,which was significantly shorter than(8.6±1.9)d in the CG(t=4.943,P<0.01).After treatment,the grading of oral mucositis in the OG was better than that in the CG,with a statistically significant difference(Z=2.942,P<0.05).The oral pain scores of the OG was lower than that in the CG at different time points after treatment,and the difference was statistically significant(t=8.207,11.017,P<0.01).After treatment,the levels of IL-6,IL-1βand TNF-αin peripheral blood of the OG were significantly lower than those in the CG(t=5.217,2.775,4.053,P<0.01).There were statistically significant differences in CD4+,CD8+and CD4+/CD8+between the OG and the CG after treatment(t=5.692,6.093,3.658,P<0.01).Conclusion:Kangfuxin Solution combined with LLLT can significantly shorten the healing time of oral mucosal,reduce the grading of oral mucositis,relieve oral pain,reduce inflammatory response and improve the immune function of patients.展开更多
Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising f...Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.展开更多
In laser-guided bomb attacking process,the target indication from the laser target designator is the premise for the bomb to hit the target accurately.Considering the lack of quantitative study of the irradiation area...In laser-guided bomb attacking process,the target indication from the laser target designator is the premise for the bomb to hit the target accurately.Considering the lack of quantitative study of the irradiation area of the laser target designator,this paper,based on the existing aircraft motion model and the laser transmission model,uses two aircraft as respectively the carrier of the laser-guided bomb and the carrier of the laser designator and proposes a method to calculate the global irradiation area of the airborne laser designator.By using the proposed algorithm,the global irradiation area when attacking a large flat target or a large spherical target is simulated respectively.Finally,according to the simulation results,the influences of different factors on the shapes of the irradiation area are discussed in detail.展开更多
Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of ...Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of laser pulse and the overall shape of the intensity distribution in the focal line have different influences on the plasma. Calculations show that the evolution of temperature variation is more sensitive to the pulse duration and the electron density variation is more sensitive to the pulse intensity. Pulses with duration of 200 ps to 500 ps and with intensity of 0.2 TW/cm2 to 1.0 TW/cm2 are proved acceptable in slab x-ray lasers.展开更多
In this paper, we investigate the laser irradiation of ZnO single crystals and its influence on photoluminescence. Our study shows that the photoluminescence of ZnO single crystals strongly depends on surface morpholo...In this paper, we investigate the laser irradiation of ZnO single crystals and its influence on photoluminescence. Our study shows that the photoluminescence of ZnO single crystals strongly depends on surface morphologies. The ultraviolet emissions of laser treated-ZnO under 200 mJ/cm^2 become stronger, whereas for those deteriorated by irradiation above 200 mJ/cm^2, the green emissions centred at 2.53 eV are significantly enhanced with a red-shift to 2.19 eV, probably due to the changes in the charge states of the defects. Enhanced yellow-green emissions are well resolved into four peaks at around 1.98, 2.19, 2.36, and 2.53 eV due to a shallow irradiation depth. Possible origins are proposed and discussed.展开更多
Different three-dimension (3D) nanotetrapods, containing club-like nanocrystals, nanotetrapods and four-foot-like nanocrystals were synthesized from Zinc sheet via CO2 laser irradiation and coaxially transporting O2...Different three-dimension (3D) nanotetrapods, containing club-like nanocrystals, nanotetrapods and four-foot-like nanocrystals were synthesized from Zinc sheet via CO2 laser irradiation and coaxially transporting O2. Different nanoproducts were fabricated by changing the content of oxygen in the experiment. The morphologies, components, phase structures and optical properties of the products were investigated by a field-emission scanning electron microscopy, an X-ray diffraction, an energy dispersed X-ray spectrometer and a photoluminescence spectroscope. The X-ray diffraction spectra were obtained on a Rigaku D/max 2500PC diffractometer. The experimental results reveal that high quality ZnO nanotetrapods can be fabricated on the special parameters, and growth of ZnO nanotetrapods depends on Vapour-Liquid-Solid(VLS) model, and the content of oxygen in the gas, namely, oxygen partial pressure is one of main factors to control morphologies and optical properties ofZnO nanotetrapods; these advantages above are important for realization of optoelectronic devices.展开更多
文摘Objective: To study the effect of low-level laser irradiation (LLLI) combined with ferulic acid on the osteoblast differentiation and maturation as well as osteogenesis signaling pathway expression. Methods: The cranium was collected from the SD rats born within 24 h, osteoblasts were separated, cultured and then divided into control group, ferulic acid group, LLLI group, ferulic acid + LLLI group, and the expression osteoblast differentiation markers, proliferation molecules and signaling pathway molecules were detected after continuous treatment with different conditions for three days. Results: 3 d after treatment, the Bax and Bid mRNA expression in ferulic acid group, LLLI group and ferulic acid + LLLI group of cells were significantly lower than those in control group while Bcl-2, CyclinD1, E2F, Col-I, OC and ALP mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were significantly higher than those in control group;Bax and Bid mRNA expression in ferulic acid + LLLI group of cells were significantly lower than those in ferulic acid group and LLLI group while Bcl-2, CyclinD1, E2F, Col-I, OC and ALP mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were significantly higher than those in ferulic acid group and LLLI group;Col-I, OC, ALP, Bax, Bid, Bcl-2, CyclinD1 and E2F mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were not significantly different between ferulic acid group and LLLI group. Conclusion: Low-level laser irradiation (LLLI) combined with ferulic acid can promote osteoblast differentiation and maturation and activate osteogenesis signaling pathway.
文摘BACKGROUND Lumbar radiculopathy spondylosis is a relatively common orthopedic disease with a high incidence rate.It most commonly occurs in the lumbar 4-5 and lumbar 5-sacral 1 vertebrae,which account for approximately 95%of cases.It mostly occurs in people aged 30-50 years old and greatly affects their quality of life.AIM To determine the effect of triple-voltage acupuncture combined with helium-neon laser irradiation on the quality of care and improvement of symptoms in patients with lumbar radiculopathy spondylolisthesis.METHODS In this study,we selected 120 patients with lumbar radiculopathy spondylosis who were treated at our hospital between June 2019 to June 2020.The patients were divided into control and observation groups according to the random number table method,with 60 patients in each group.Patients in the observation group were treated with three-volt moxibustion combined with helium-neon laser irradiation,and those in the control group were treated with lumbar traction.After 1 month of treatment,the lumbar pain scores,lumbar spine motor functions,clinical treatment effects,and nursing satisfaction of the two groups were compared.RESULTS The results showed that acupuncture combined with laser irradiation significantly improved the patients'clinical symptoms,i.e.,reduced their low back pain,significantly lower numerical rating scale pain scores in the observation group than in the control group,and better lumbar spine motility than in the control group,compared to lumbar traction.In addition,they were cared for.The treatment effectiveness rate of the observation group was 95.5%,which was significantly higher than that of the control group(81.67%).Satisfaction with care was higher than 90 points in both groups,but the difference was not statistically significant.CONCLUSION Our study provides a clinical rationale for the future treatment of patients with lumbar spine disease.However,further extensive research is needed for validation.
基金Supported by Fund from Jilin Provincial Science & Technology Department(20090541)Project from Department of Education ofJilin Province(200828)~~
文摘[ Objective ]The aim of this study was to discuss the feasibility of breeding cabbage with high Vc by 532 nm laser.[ Method ] With the material of cabbage, the embryo of cabbage seeds was irradiated by frequency doubled Nd :YAG laser with different power densities and time, and the effects of laser mode on functional leaf area, chlorophyll and Vc contents in cabbage seedlings were also studied. [Result] The results showed that functional leaf area and chlorophyll content were related to laser power density and time when laser power density was 2 -20 mW/mm^2, while the optimal effect was observed at 14 mW/mm^2 for 1 min. The content of Vc in cabbage seedlings was related to dosage of laser irradiation when irradiating time ranged from 1 to 5 min, and the optimal effect was observed at 2.8 J (20 mW/mm^2, 3 min). [Conclusion] Irradiating the embryo of cabbage seeds with proper irradiation dosage of 532 nm laser can increase its effect on the Vc content significantly.
基金supported by grants from the Kaohsiung Medical University of Taiwan (KMU-Q099018 and KMU-Q098025)
文摘Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cel Is were irradiated (660 nm) daily with doses of O, 1, 2 or 4 J .cm-2. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J.cm-2 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J.cm-2 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration.
基金supported by the National Natural Science Foundation of China (Grant No 10764002)
文摘Stimulated photoluminescence (PL) emission has been observed from an oxide structure of silicon when optically excited by a radiation of 514nm laser. Sharp twin peaks at 694 and 692nm are dominated by stimulated emission, which can be demonstrated by its threshold behaviour and linear transition of emission intensity as a function of pump power. The oxide structure is formed by laser irradiation on silicon and its annealing treatment. A model for explaining the stimulated emission is proposed, in which the trap states of the interface between an oxide of silicon and porous nanocrystal play an important role.
基金supported by the Kaohsiung Municipal Ta-Tung Hospital(grant kmtth-102-010)the Kaohsiung Medical University in Taiwan under the grant“Aim for the Top Universities Grant”(KMU-TP103B08)
文摘Oral submucous fibrosis (OSF) is a potentially malignant disorder that is characterized by a progressive fibrosis in the oral submucosa. Arecoline, an alkaloid compound of the areca nut, is reported to be a major aetiological factor in the development of OSF. Low-power laser irradiation (LPLI) has been reported to be beneficial in fibrosis prevention in different damaged organs. The aim of this study was to investigate the potential therapeutic effects of LPLI on arecoline-induced fibrosis. Arecoline- stimulated human gingival fibroblasts (HGFs) were treated with or without LPLI. The expression levels of the fibrotic marker genes alpha-smooth muscle actin (a-SMA) and connective tissue growth factor (CTGF/CCN2) were analysed by quantitative real- time reverse transcription polymerase chain reaction (RT-PCR) and western blots. In addition, the transcriptional activity of CCN2 was further determined by a reporter assay. The results indicated that arecoline increased the messenger RNA and protein expression of CCN2 and a-SMA in HGF. Interestingly, both LPLI and forskolin, an adenylyl cyclase activator, reduced the expression of arecoline-mediated fibrotic marker genes and inhibited the transcriptional activity of CCN2. Moreover, pretreatment with SQ22536, an adenylyl cyclase inhibitor, blocked LPLI's inhibition of the expression of arecoline-mediated fibrotic marker genes. Our data suggest that LPLI may inhibit the expression of arecoline-mediated fibrotic marker genes via the cAMP signalling pathway.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2008AA8040508)the Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No. L08010401JX0806)
文摘To understand the surface morphology evolution of fused silica induced by 10.6μm CO2 laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are utilized to characterize the surface structure and roughness of the laser irradiated area. The results show that three typical surface morphologies and two typical hydrophilicity test images are observed at different laser powers and pulse durations. The correlations between surface temperature and surface morphology as well as hydrophilicity behaviours are presented. The different hydrophilicity behaviours are related to surface structures of the laser-induced crater and thermal diffusion area. The thermal diffusion length monotonously increases with increasing laser power and pulse duration. The crater width is almost determined by the laser beam size. The crater depth is more sensitive to the laser power and pulse duration than the crater width.
文摘The laser irradiation effect on the SERS intensity for Ag film is discussed using crystal violet (CV) as a probe. The thickness of silver film,the etching time of the glass slide by gaseous hydrogen fluoride, and the laser irradiation time for different amounts of CV on silver films were investigated. The laser burn out model was proposed to explain the dependence of the SERS intensity of CV on the laser irradiation time.
文摘Systematic experiments about the antitumor effects of low energy laser irradiation combined with the traditional antitumor medicine of cyclophosphamide were conducted using the experimental model of mouse S180 ascites sarcoma.The three groups of tumor bearing mice were irradiated upon the inner corners with the dosages of 11 00,14 67 and 22 00 J·cm -2 LELI respectively,and injected with CYT intraperitoneally to observe the changes of the survival time,the ascites growth speed,and the kinetic changes of immune functions.The survival times of the three groups of CYT/LELI combination were obviously longer than those of the tumor and CYT control groups.Correspondingly,the amounts of ascites,tumor cells densities and total tumor cells in CYT/LELI groups decreased significantly,while the death ratio of the tumor cells increased.Comparatively,the group of 22 00 J·cm -2 LELI combined with CYT showed the most ideal antitumor effects,and the life prolongation ratio was up to 53 20%.
文摘Silver nanoparticles (AgNPs) were fabricated by repetitive irradiation of near ultraviolet (UV) nanosecond laser pulses (355 nm, 5 ns) in an aqueous solution of silver nitrate in the absence of stabilizing agents. A broad absorption peak was observed in the visible region showing the formation of a variety of AgNPs in the solution. Among the variety of products, it was found that silver nanocubes (AgNCs) grew in size with longer laser irradiation time. The size of AgNCs also increased with higher laser intensity. The average size of AgNCs, investigated by a scanning electron microscope (SEM) was in the range of 75 - 200 nm. The number of reduced atoms in AgNCs as a function of laser intensity showed that the AgNCs are apparently produced by a four photon process, implying that the formation of dimer silver atoms is essential for the formation.
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(2019R1A6C1010042,2021R1A6C103A427)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1I1A1A01060380,2021R1C1C2010726,2019H1D3A1A01071209)。
文摘The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921804the National Natural Science Foundation of China under Grant Nos 11204236 and 61308006the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the chemical reaction of the femtosecond laser-induced structure change zone and hydrofluoric acid solution. The morphologies of the through micro-holes and micro-hole arrays are characterized by using scanning electronic microscopy, The effects of the pulse number on the depth and diameter of the holes are investigated. Honeycomb arrays of through micro-holes fabricated at different laser powers and pulse numbers are demonstrated.
基金the National Key R&D Program of China (Grant No. 2019YFA0705000)the National Natural Science Foundation of China (Grant Nos. 11874147, 11933005, and 12134001)+3 种基金the Science and Technology Commission of Shanghai Municipality (Grant No. 21DZ1101500)the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01)the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxm X1144)the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP202105)。
文摘We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolution and precision calculations are used to resolve the ultrafast laser-induced anisotropic relaxations of the pressure components on the time-scale comparable to the intrinsic liquid density relaxation time. The magnitudes of the dynamic surface tensions are found being modulated sharply within picoseconds after the irradiation, due to the development of the nanometer scale non-hydrostatic regime behind the exterior atomic layer of the liquid surfaces.The reported novel regulation mechanism of the liquid surface stress field and the dynamic surface tension hints at levitating the manipulation of liquid surfaces, such as ultrafast steering the surface directional transport and patterning.
文摘An opportunity to use laser radiation as a means to reduce negative aftermath of acute and prolonged exposure to ionizing radiation was checked. The mice were exposed to γ- rays of ^60Co (whole body irradiation) in the dose of 7 Gy (the transitional clinical form of the acute radiation sickness). The dose rate at acute irradiation was 1.14 Gy/min, and at prolonged exposure, 0.027 Gy/min. Laser radiation in the dose l mJ/cm^2 was used to irradiate only the back of a mouse. First, the mice were exposed to γ-radiation, then to laser radiation. The time interval between two types of irradiation did not exceed 30 min. It was shown that the radiation protection of mice with laser radiation is possible at exposure to ionizing radiation in a wide dose interval and can reduce negative after-effects of both the acute and prolonged radiation exposure.
文摘Objective:To investigate the effect of Kangfuxin Solution(康复新液)combined with low-level laser therapy(LLLT)on cytokines and immune function in patients with radiation-induced oral mucositis.Methods:There were 84 nasopharyngeal carcinoma patients with oral mucositis after intensity-modulated radiation therapy(IMRT)were randomly divided into the control group(CG)and the observation group(OG),with 42 cases in each group.The CG was given LLLT,and the OG was treated with Kangfuxin Solution in addition to LLLT for 10 consecutive days.The healing time of oral mucosa,mucositis grading,oral pain scores,cytokines(interleukin-6,interleukin-1βand tumor necrosis factor-α)and T lymphocyte subsets were compared between the 2 groups before and after treatment.Results:The healing time of oral mucosa in the OG was(6.8±1.4)d,which was significantly shorter than(8.6±1.9)d in the CG(t=4.943,P<0.01).After treatment,the grading of oral mucositis in the OG was better than that in the CG,with a statistically significant difference(Z=2.942,P<0.05).The oral pain scores of the OG was lower than that in the CG at different time points after treatment,and the difference was statistically significant(t=8.207,11.017,P<0.01).After treatment,the levels of IL-6,IL-1βand TNF-αin peripheral blood of the OG were significantly lower than those in the CG(t=5.217,2.775,4.053,P<0.01).There were statistically significant differences in CD4+,CD8+and CD4+/CD8+between the OG and the CG after treatment(t=5.692,6.093,3.658,P<0.01).Conclusion:Kangfuxin Solution combined with LLLT can significantly shorten the healing time of oral mucosal,reduce the grading of oral mucositis,relieve oral pain,reduce inflammatory response and improve the immune function of patients.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110250,2021B1515120041)+1 种基金the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-005)the Fundamental Research Funds for the Central Universities(2020IVA068,2021lll007JC)
文摘Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.
基金supported by the Aeronautical Science Foundation of China(ASFC-20135153031ASFC-20135553035ASFC-2017ZC53033)
文摘In laser-guided bomb attacking process,the target indication from the laser target designator is the premise for the bomb to hit the target accurately.Considering the lack of quantitative study of the irradiation area of the laser target designator,this paper,based on the existing aircraft motion model and the laser transmission model,uses two aircraft as respectively the carrier of the laser-guided bomb and the carrier of the laser designator and proposes a method to calculate the global irradiation area of the airborne laser designator.By using the proposed algorithm,the global irradiation area when attacking a large flat target or a large spherical target is simulated respectively.Finally,according to the simulation results,the influences of different factors on the shapes of the irradiation area are discussed in detail.
基金suported by the National Natural Science Foundation of China (Grant No. 10874242)the National Basic Research Program of China (973 Program) (Grant No. 2007CB815105)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070290008)
文摘Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of laser pulse and the overall shape of the intensity distribution in the focal line have different influences on the plasma. Calculations show that the evolution of temperature variation is more sensitive to the pulse duration and the electron density variation is more sensitive to the pulse intensity. Pulses with duration of 200 ps to 500 ps and with intensity of 0.2 TW/cm2 to 1.0 TW/cm2 are proved acceptable in slab x-ray lasers.
基金Project supported by the National Natural Science Foundation of China(Grant No.10974009)
文摘In this paper, we investigate the laser irradiation of ZnO single crystals and its influence on photoluminescence. Our study shows that the photoluminescence of ZnO single crystals strongly depends on surface morphologies. The ultraviolet emissions of laser treated-ZnO under 200 mJ/cm^2 become stronger, whereas for those deteriorated by irradiation above 200 mJ/cm^2, the green emissions centred at 2.53 eV are significantly enhanced with a red-shift to 2.19 eV, probably due to the changes in the charge states of the defects. Enhanced yellow-green emissions are well resolved into four peaks at around 1.98, 2.19, 2.36, and 2.53 eV due to a shallow irradiation depth. Possible origins are proposed and discussed.
基金Funded by the Open Foundation of Jiangsu Provincial Key Laboratory of Photon-manufacture (GZ200708)the 7th Student Research Train Programof Jiangsu University (No. 07A172)
文摘Different three-dimension (3D) nanotetrapods, containing club-like nanocrystals, nanotetrapods and four-foot-like nanocrystals were synthesized from Zinc sheet via CO2 laser irradiation and coaxially transporting O2. Different nanoproducts were fabricated by changing the content of oxygen in the experiment. The morphologies, components, phase structures and optical properties of the products were investigated by a field-emission scanning electron microscopy, an X-ray diffraction, an energy dispersed X-ray spectrometer and a photoluminescence spectroscope. The X-ray diffraction spectra were obtained on a Rigaku D/max 2500PC diffractometer. The experimental results reveal that high quality ZnO nanotetrapods can be fabricated on the special parameters, and growth of ZnO nanotetrapods depends on Vapour-Liquid-Solid(VLS) model, and the content of oxygen in the gas, namely, oxygen partial pressure is one of main factors to control morphologies and optical properties ofZnO nanotetrapods; these advantages above are important for realization of optoelectronic devices.