期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical Study of the High-Frequency Wave Loads and Ringing Response of A Bottom-Hinged Vertical Cylinder in Focused Waves
1
作者 ZHANG Yi TENG Bin 《China Ocean Engineering》 SCIE EI CSCD 2020年第4期513-525,共13页
This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves.Input wave groups are generated by the... This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves.Input wave groups are generated by the technique of frequency-focusing,and the numerical simulation of focused waves is based on the NewWave model and a Fourier time-stepping procedure.The proposed model is validated by comparison with the published laboratory data.In respect of both the wave elevations and the underlying water particle kinematics,the numerical results are in excellent agreement with the experimental data.Furthermore,the local evolution of power spectra and the transfer of energy into higher frequencies can be clearly identified.Then the generalized FNV theory and Rainey’s model are applied respectively to calculate the nonlinear wave loads on a bottom-hinged vertical cylinder in focused waves.Resonant ringing response excited by the nonlinear high-frequency wave loads is found in the numerical simulation when frequency ratios(natural frequency of the structure to peak frequency of wave spectra)are equal to 3–5.Dynamic amplification factor of ringing response is also investigated for different dynamic properties(natural frequency and damping ratio)of the structure. 展开更多
关键词 high-frequency wave loads ringing response focused wave vertical cylinder
下载PDF
Aero-Hydrodynamic Coupled Dynamic Characteristics of Semi-Submersible Floating Offshore Wind Turbines Under Inflow Turbulence 被引量:1
2
作者 JIANG Hai-rui BAI Xing-lan Murilo A.VAZ 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期660-672,共13页
In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated... In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically. 展开更多
关键词 turbulence characteristics floating offshore wind turbines second-order hydrodynamic loads low-and high-frequency responses aero-hydrodynamic coupling
下载PDF
Whole body vibration with rest days could improve bone quality of distal femoral metaphysis by regulating trabecular arrangement
3
作者 He Gong Rui Zhang +4 位作者 Jiazi Gao Meng Zhang Bei Liu Min Zhang Dong Zhu 《Science China(Life Sciences)》 SCIE CAS CSCD 2019年第1期95-103,共9页
Low-magnitude, high-frequency vibration(LMHFV) with rest days(particularly seven rest days) was considerably effective in improving the morphological and mechanical properties of rat proximal femur. However, current k... Low-magnitude, high-frequency vibration(LMHFV) with rest days(particularly seven rest days) was considerably effective in improving the morphological and mechanical properties of rat proximal femur. However, current knowledge is limited regarding the possible benefit of this mechanical regimen to other bone sites and whether the optimal rest days are the same. This study followed our previous experiment on LMHFV loading with rest days for three-month-old male Wistar rats. The experiment involved seven groups, namely, vibrational loading for X day followed with X day rest(X=1, 3, 5, 7), daily vibrational loading,tail suspension and baseline control. Micro-computed tomography(micro-CT) scanning was used to evaluate the microarchitecture of the distal femoral trabecular bone. Micro-CT image-based microfinite element analysis was performed for each distal femoral metaphysis. LMHFV with rest days substantially changed the trabecular arrangement from remarkably plate-like to rod-like. Vibrational loading with 1 day rest was substantially effective in improving the architecture and apparent-and tissuelevel mechanical properties of the rat distal femoral metaphysis. This study may provide an improved understanding of the sitespecific responses of bone tissue to LMHFV with rest days for a substantially effective therapy of a targeted bone site. 展开更多
关键词 low-magnitude high-frequency vibration REST DAYS MICROARCHITECTURE microfinite element analysis von Mises stress apparent stiffness DISTAL FEMORAL METAPHYSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部