期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Intelligent production optimization method for a low pressure and low productivity shale gas well
1
作者 ZHU Qikang LIN Botao +2 位作者 YANG Guang WANG Lijia CHEN Man 《Petroleum Exploration and Development》 CSCD 2022年第4期886-894,共9页
Shale gas wells frequently suffer from liquid loading and insufficient formation pressure in the late stage of production.To address this issue,an intelligent production optimization method for low pressure and low pr... Shale gas wells frequently suffer from liquid loading and insufficient formation pressure in the late stage of production.To address this issue,an intelligent production optimization method for low pressure and low productivity shale gas well is proposed.Based on the artificial intelligence algorithms,this method realizes automatic production and monitoring of gas well.The method can forecast the production performance of a single well by using the long short-term memory neural network and then guide gas well production accordingly,to fulfill liquid loading warning and automatic intermittent production.Combined with adjustable nozzle,the method can keep production and pressure of gas wells stable automatically,extend normal production time of shale gas wells,enhance automatic level of well sites,and reach the goal of refined production management by making production regime for each well.Field tests show that wells with production regime optimized by this method increased 15%in estimated ultimate reserve(EUR).Compared with the development mode of drainage after depletion recovery,this method is more economical and can increase and stabilize production effectively,so it has a bright application prospect. 展开更多
关键词 shale gas low pressure and low productivity gas well production optimization artificial intelligence long short-term memory neural network adjustable nozzle
下载PDF
Structural integrity evaluation of irradiated LEU targets for the production of molybdenum‑99 using thermo‑mechanical behavior simulation coupled with pressure of fission gas release calculation
2
作者 N.Mellel B.Mohammedi +3 位作者 M.Salhi M.Dougdag S.Missaoui S.Hanini 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第12期12-23,共12页
Irradiated low-enriched uranium as target plates is used to produce,via neutron radiation and from the molybdenum-99 fission product,technetium-99m,which is a radio-element widely used for diagnosis in the field of nu... Irradiated low-enriched uranium as target plates is used to produce,via neutron radiation and from the molybdenum-99 fission product,technetium-99m,which is a radio-element widely used for diagnosis in the field of nuclear medicine.The behavior of this type of target must be known to prevent eventual failures during radiation.The present study aims to assess,via prediction,the thermal–mechanical behavior,physical integrity,and geometric stability of targets under neutron radiation in a nuclear reactor.For this purpose,a numerical simulation using a three-dimensional finite element analysis model was performed to determine the thermal expansion and stress distribution in the target cladding.The neutronic calculation results,target material properties,and cooling parameters of the KAERI research group were used as inputs in our developed model.Thermally induced stress and deflection on the target were calculated using Ansys-Fluent codes,and the temperature profiles,as inputs of this calculation,were obtained from a CFD thermal–hydraulic model.The stress generated,induced by the pressure of fission gas release at the interface of the cladding target,was also estimated using the Redlich–Kwong equation of state.The results obtained using the bonded and unbonded target models considering the effect of the radiation heat combined with a fission gas release rate of approximately 3%show that the predicted thermal stress and deflection values satisfy the structural performance requirement and safety design.It can be presumed that the integrity of the target cladding is maintained under these conditions. 展开更多
关键词 Irradiated LEU target Mo-99 production Integrity evaluation Thermo-mechanical analyses Fission gas pressure
下载PDF
Development of a pressure coring system for the investigation of deep underground exploration
3
作者 Da Guo Ling Chen +8 位作者 Zhongya Zhou Dingming Wang Yiwei Zhang Xun Yang Xin Fang Xiaojun Wang Heping Lu Lin Dai Heping Xie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1351-1364,共14页
To provide a more accurate evaluation of the scale of deep underground resources,a new pressure coring system was carefully developed and its strength and safety of the engineering were verified by theoretical analyse... To provide a more accurate evaluation of the scale of deep underground resources,a new pressure coring system was carefully developed and its strength and safety of the engineering were verified by theoretical analyses and numerical simulation.The designed pressure coring system can obtain cores with length of 3 m and diameter of 50 mm at 70 MPa.The results of the ball-drop operation experiment demonstrate that differential motion assembly can effectively cut a safety pin by applying a tensile force of 4852 N,and it can lift the core tube through the center pole to complete a series of mechanical actions to seal the pressure.Additionally,by maintaining pressures at 70 MPa for 30 min,the pressure sealing capacity of the system was proven.Furthermore,a core sample with a diameter of 50 mm was obtained through a core drilling experiment and the coring performance of the pressure coring system was verified.This study can not only enrich the existing onshore coring technology but also provide a theoretical guide and design criteria for the development of similar pressure coring systems to meet the demand for deeper underground exploration. 展开更多
关键词 Underground exploration In-situ coring pressure coring Oil and gas production
下载PDF
Numerical Simulation of Oil and Gas Two-Phase Flow in Deep Condensate Gas Reservoirs in Bohai Buried Hills
4
作者 Zhennan Gao Xianbo Luo +2 位作者 Lei Zhang Qi Cheng Yingxu He 《Open Journal of Applied Sciences》 2023年第11期2068-2079,共12页
The BZ19-6 gas field is characterized by high temperature and high pressure (HTHP), high condensate content, little difference between the formation pressure and dew point pressure, and large amount of reverse condens... The BZ19-6 gas field is characterized by high temperature and high pressure (HTHP), high condensate content, little difference between the formation pressure and dew point pressure, and large amount of reverse condensate liquid. During the early stage of depletion development, the production gas-oil ratio (GOR) and production capacity remain relatively stable, which is inconsistent with the conventional reverse condensate seepage law. In view of the static and dynamic conflict in development and production, indoor high-temperature and high-pressure PVT experiment was carried out to reveal the mist-like condensation phenomenon of fluids in the BZ19-6 formation. And the seepage characteristics of condensate gas reservoirs with various degrees of depletion under the condition of HTHP were analyzed based on production performance. The change rule of fluid phase state was analyzed in response to the characterization difficulties of the seepage mechanism. The fluid state was described using the miscible mechanism. And the interphase permeability interpolation coefficient was introduced based on interfacial tension. By doing so, the accurate characterization of the “single-phase flow of condensate gas-near-miscible mist-like quasi single-phase flow-oil-gas two-phase flow” during the development process was achieved. Then the accurate fitting of key indicators for oilfield development was completed, and the distribution law of formation pressure and the law of condensate oil precipitation under different reservoir conditions are obtained. Based on research results, the regulation strategy of variable flow rate production was developed. Currently, the work system has been optimized for 11 wells, achieving a “zero increase” in the GOS of the gas field and an annual oil increase of 22,000 cubic meters. 展开更多
关键词 High Temperature and High pressure Condensate gas Reservoirs Mist Flow Characterization of Seepage Flow History Match production Regulation
下载PDF
Prediction of Flowing Bottomhole Pressures for Two-Phase Coalbed Methane Wells 被引量:5
5
作者 LIU Xinfu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第5期1412-1420,共9页
A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were dev... A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were developed based on the well liquid flow equation. FBHPs during the production were predicted by considering the effect of entrained liquid on gravitational gradients. Comparison of calculated BHPs by Cullender-Smith and proposed method was also studied. The results show that the proposed algorithm gives the desired accuracy of calculating BHPs in the low- productivity and low-pressure CBM wells. FBHP is resulted from the combined action of wellhead pressure, gas column pressure and fluid column pressure. Variation of kinetic energy term, compressibility and friction factors with depth increments and liquid holdup with velocity should be considered to simulate the real BHPs adequately. BHP is a function of depth of each column segment. The small errors of less than 1.5% between the calculated and measured values are obtained with each segment within 25 m. Adjusting BHPs can effectively increase production pressure drop, which is beneficial to CBM desorption and enhances reservoir productivity. The increment of pressure drop from 5.37 MPa2 to 8.66 MPa2 leads to an increase of CBM production from 3270 m3/d to 6700 m3/d and is attributed to a decrease in BHP from 2.25 MPa to 1.33 MPa. 展开更多
关键词 coalbed methane productivity flowing bottomhole pressure gas column pressure two-phase fluid column pressure
下载PDF
CO2 residual concentration of potassium-promoted hydrotalcite for deep CO/CO2 purification in H2-rich gas 被引量:1
6
作者 Xuancan Zhu Yixiang Shi Ningsheng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期956-964,共9页
Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be ... Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be controlled to trace levels of below 10 ppm by in situ reduction of the COconcentration to less than 100 ppm via the aforementioned process. The COadsorption capacity of potassiumpromoted hydrotalcite at elevated temperatures under different adsorption(mole fraction, working pressure) and desorption(flow rate, desorption time, steam effects) conditions was systematically investigated using a fixed bed reactor. It was found that the COresidual concentration before the breakthrough of COmainly depended on the total amount of purge gas and the COmole fraction in the inlet syngas.The residual COconcentration and uptake achieved for the inlet gas comprising CO(9.7 mL/min) and He(277.6 mL/min) at a working pressure of 3 MPa after 1 h of Ar purging at 300 mL/min were 12.3 ppm and0.341 mmol/g, respectively. Steam purge could greatly improve the cyclic adsorption working capacity, but had no obvious benefit for the recovery of the residual COconcentration compared to purging with an inert gas. The residual COconcentration obtained with the adsorbent could be reduced to 3.2 ppm after 12 h of temperature swing at 450 °C. A new concept based on an adsorption/desorption process, comprising adsorption, steam rinse, depressurization, steam purge, pressurization, and high-temperature steam purge, was proposed for reducing the steam consumption during CO/COpurification. 展开更多
关键词 Potassium-promoted hydrotalcite Warm gas clean-up Elevated-temperature pressure swing adsorption CO deep purification High purity hydrogen production
下载PDF
Influence of wellhead pressure and water cut in the optimization of oil production from gas lifted wells 被引量:1
7
作者 S.Hari Shanker Krishna +2 位作者 Manav Patel Pooja Bhatia Rakesh Kumar Vij 《Petroleum Research》 2022年第2期253-262,共10页
The worldwide increase in energy demand necessitates the development and optimization of marginal oil fields for sustenance.In this regard,effective and economic production of fluids are heavily relied upon the artifi... The worldwide increase in energy demand necessitates the development and optimization of marginal oil fields for sustenance.In this regard,effective and economic production of fluids are heavily relied upon the artificial lift techniques as the reservoir's natural energy may not be able to deliver the fluids to the surface.Gas lift is a widely practised and successful method that is suitable for rejuvenating the oil production from such fields.In this study,the influence of critical parameters like water cut,wellhead pressure(WHP)and gas-lift gas injection rate on the output from a gas lifted well was analysed.A significant reduction in the oil production was observed with the increase in water cut.For a fixed gas injection rate of 1 Mmscf/day,the production decreased by 26.90%when the water cut increased from 15%to 30%and further by 50.80%when the water cut reached 45%.An increase in the gas injection rate from 1 Mmscf/day to 8 Mmscf/day resulted in an increase in the production rate by 29.21%,40.48%and 56.56%for 15%,30%,and 45%water cut conditions,respectively.It was observed that there is a drop in the oil rate with the increase in WHP for a constant gas injection rate.An increase in the WHP from 100 psi to 300 psi resulted in a drop in the oil production rate by 11.01%,11.78%and 12.74%for 15%,30%and 45%water cut conditions,respectively.The study sheds light on the significance of optimizing the critical parameters to maximize the production from a well,with severely affected productivity,using a continuous gas lift system. 展开更多
关键词 Artificial lift Continuous gas lift productIVITY Water cut Wellhead pressure
原文传递
Experimental research on reservoir sensitivity to stress and impacts on productivity in Kela 2 Gas Field 被引量:1
8
作者 SUN Longde SONG Wenjie JIANG Tongwen 《Science China Earth Sciences》 SCIE EI CAS 2004年第z2期159-166,共8页
Kela 2 Gas Field, with high formation pressure (74.35MPa), high pressure coeffi-cient (2.022) and difficulty of potential test and evaluation, is the largest integrated proved dry gas reservoir in China so far and the... Kela 2 Gas Field, with high formation pressure (74.35MPa), high pressure coeffi-cient (2.022) and difficulty of potential test and evaluation, is the largest integrated proved dry gas reservoir in China so far and the principal source for West-East Gas Development Project. In order to correctly evaluate the elastic-plastic deformation of rocks caused by the pressure decline during production, some researches, as the experiment on reservoir sensitivity to stress of gas filed with abnormal high pressure, are made. By testing the rock mechanic properties, porosities and permeabilities at different temperature and pressure of 342 core samples from 5 wells in this area, the variations of petro-physical properties at changing pressure are analyzed, and the ap-plicable inspection relationship is concluded. The average productivity curve with the reservoir sensitivity to stress is plotted on the basis of the research, integrated with the field-wide produc-tivity equation. The knowledge lays a foundation for the gas well productivity evaluation in the field and the gas field development plan, and provides effective techniques and measures for basic research on the development of similar gas fields. 展开更多
关键词 Kela 2 gas Field ABNORMAL high pressure OVERBURDEN pressurE experiment reservoir sensitivity to stress productivity petro-physical properties of reservoir.
原文传递
Numerical and experimental study on the refrigeration performance of a variable-section gas wave oscillation tube
9
作者 WANG HaiTao LIU XinYu +2 位作者 FU ZhongMeng HU DaPeng LIU PeiQi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第2期489-500,共12页
This paper introduces the refrigeration cycle process of the gas wave oscillation tube(GWOT).Aiming at the problem that the strong reverse compression waves generated during the refrigeration process affect the perfor... This paper introduces the refrigeration cycle process of the gas wave oscillation tube(GWOT).Aiming at the problem that the strong reverse compression waves generated during the refrigeration process affect the performance,this paper proposes a variable-section GWOT that weakens the reverse compression waves and a variable-section structure designed using a numerical method.Results showed that the variable-section structure could reduce the intensity of the incident shock wave by approximately 7%and the total entropy production in the refrigeration cycle by approximately 8%under the design condition.Moreover,the variable-section structure can effectively weaken the strength of the reverse compression waves and improve the refrigeration efficiency by approximately 4%under the same working conditions.The variable-section structure can also widen the highperformance working range of the GWOT.The experimental results reveal that the high-performance working range can be expanded by more than two times under the design condition.The research can guide the subsequent development of gas wave refrigeration technology and a reference for other wave rotor application technologies. 展开更多
关键词 gas wave oscillation tube variable-section REFRIGERATION pressure fluctuation entropy production rate wave rotor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部