The design of high-lift Low-Pressure Turbines(LPTs)causes the separation of the boundary layer on the suction side of the blade and leads to a strong secondary flow.This present study aims to minimize secondary losses...The design of high-lift Low-Pressure Turbines(LPTs)causes the separation of the boundary layer on the suction side of the blade and leads to a strong secondary flow.This present study aims to minimize secondary losses through endwall slot suction and incoming wakes in a front-loaded high-lift LPT cascade with Zweifel of 1.58 under low Reynolds number of 25000.Two slotted schemes for the boundary layer of the endwall were designed(Plan A and Plan B),and the effects of suction mass flow on secondary flow were studied.The underlying physics of the endwall boundary layer of the suction and secondary flow under unsteady wakes was discussed.The results show that slot suction at the endwall boundary layer can significantly suppress the secondary flow by removing low-momentum fluids.Plans A and B significantly reduced the secondary kinetic energy by 44.2%and 36.9%,respectively,compared with the baseline cascade at the suction mass flow ratios of 1%.With an increase in the mass flow ratio of suction,the secondary flow was gradually reduced in both Plans A and B.It is more beneficial to control the secondary flow to destroy the intersection of the pressure side and suction side of the horseshoe vortex before it develops into a passage vortex.Under unsteady wakes,the combined effects of incoming wakes and endwall boundary layer suction can further suppress the secondary flow at the suction mass flow ratios of 2%for Plan A,because the positive and negative vorticity inside upstream wakes accelerated the mixing of the main flow and secondary flow and thus increased the energy of secondary vortices.展开更多
Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reducti...Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reduction.Therefore,this uncertainty impact on ultra-highly loaded blades under extreme operational conditions near the margins with potential large-scale open separation is focused on in this study.It is demonstrated that this impact is significant,unfavourable,and nonlinear,which is clearly severer under extreme conditions.In addition to the overall attenuation and notable scattering of specific performance,the operational margins with open separation are also notably scattered with great risk of significant reduction.This scattering and nonlinearity are dominated by the variations in leading-edge thickness.The thinning of leading edge triggers local transition,enhancing downstream friction and reducing resistance to open separation,which is further exacerbated by operational deterioration.However,the opposite thickening yields less benefit,implying nonlinearity.This unfavourable impact highlights the need for robust aerodynamic design,where both a safer operational condition and a more robust blade are indispensable,i.e.,a compromise among performance,weight,and robustness.Besides the necessary limitation of loading levels,a mid-loaded design is recommended to reduce adverse pressure gradients in both the leading edge and rear region of the suction side,which helps to decrease the susceptibility of the transition and open separation to random perturbations.Similar improvements can also be achieved by appropriately thickening the leading edge.展开更多
The effects induced by the presence of incoming wakes on the boundary layer developing over a high-lift low-pressure turbine profile have been investigated in a linear cascade at mid-span.The tested Reynolds number is...The effects induced by the presence of incoming wakes on the boundary layer developing over a high-lift low-pressure turbine profile have been investigated in a linear cascade at mid-span.The tested Reynolds number is 70000,typical of the cruise operating condition.The results of the investigations performed under steady and unsteady inflow conditions are analyzed.The unsteady investigations have been performed at the reduced frequency of f+=0.62,representative of the real engine operating condition.Profile aerodynamic loadings as well as boundary layer velocity profiles have been measured to survey the separation and transition processes.Spectral analysis has been also performed to better understand the phenomena associated with the transition process under steady inflow.For the unsteady case,a phase-locked ensemble averaging technique has been employed to reconstruct the time-resolved boundary layer velocity distributions from the hot-wire instantaneous signal output.The ensemble-averaging technique allowed a detailed analysis of the effects induced by incoming wakes-boundary layer interaction in separation suppression.Time-resolved results are presented in terms of mean velocity and unresolved unsteadiness time-space plots.展开更多
The aim of this paper is to predict the phenomenon of laminar separation, transition and reattachment in a low-pressure turbine (LPT). Self-developed large eddy simulation program of compressible N-S equations was u...The aim of this paper is to predict the phenomenon of laminar separation, transition and reattachment in a low-pressure turbine (LPT). Self-developed large eddy simulation program of compressible N-S equations was used to describe the flow structures of T 106A LPT blade profile at Reynolds number of 1.1×10^5 based on the exit isentropic velocity and chord length. The com- putational results show the distributions of time-averaged wall-static pressure coefficient and mean skin-friction coefficient on the blade surface. The locations of laminar separation and reattachment points occur around 87% and 98% axial chord, which agree well with experiment data. The two-dimensional shear layer is gradually unstable along the downstream half of the suc- tion side as a result of the spanwise fluctuation and the roll up of shear layer via Kelvin-Helmholtz (KH) instability. Three-dimensional motions appear near 84% axial chord which later triggers spanwise vortexes and streamwise vortexes, leading to transition to turbulence in the separation bubble. Through introducing the concept of dissipation function, the high loss mainly comes from the places where strong shear layer and intense fluctuation exist. Furthermore, the separation region is only an accumulation center of the low-energy fluid rather than an area of loss source.展开更多
Detailed experimental measurements were conducted to study the interactions between incoming wakes and endwall secondary flow in a high-lift Low-Pressure Turbine(LPT)cascade.All of the measurements were conducted in b...Detailed experimental measurements were conducted to study the interactions between incoming wakes and endwall secondary flow in a high-lift Low-Pressure Turbine(LPT)cascade.All of the measurements were conducted in both the presence and absence of incoming wakes,and numerical analysis was performed to elucidate the flow mechanism.With increasing Reynolds number,the influence of the incoming wakes on suppressing the secondary flow gradually increased owing to the greater influence of incoming wakes on reducing the negative incidence angle at higher Reynolds numbers,leading to a lower blade loading near the leading edge and suppression of the Pressure Side(PS)leg of the horseshoe vortex.However,the effect of unsteady wakes on suppressing the profile losses gradually became weaker owing to the reduced size of the Suction Side(SS)separation bubble and increased mixing loss in the free-flow region at high Reynolds numbers.Incoming wakes clearly improved the aerodynamic performance of the low-pressure turbine cascade at low Reynolds numbers of 25,000 and 50,000.In contrast,at the high Reynolds number of 100,000,the profile loss at the midspan and mass-averaged total losses downstream of the cascade were higher in the presence of wakes than in the absence of wakes,and the unsteady wakes exerted a negative influence on the aerodynamic performance of the LPT cascade.展开更多
LES (Large-Eddy Simulation) computations were preformed to investigate the mechanisms of a kind of spanwisegroove for the passive control of laminar separation bubble on the suction surface of a low-speed highly loade...LES (Large-Eddy Simulation) computations were preformed to investigate the mechanisms of a kind of spanwisegroove for the passive control of laminar separation bubble on the suction surface of a low-speed highly loadedlow-pressure turbine blade at Re = 50,000 (Reynolds number, based on inlet velocity and axial chord length).Compared with the smooth suction surface, the numerical results indicate that: (1) the groove is effective toshorten and thin the separation bubble, which contributes the flow loss reduction on the groove surface, by thinningthe boundary layer behind the groove and promoting earlier transition inception in the separation bubble; (2)upstream movement of the transition inception location on the grooved surface is suggested being the result of thelower frequency at which the highest amplification rate of instability waves occurs, and the larger initial amplitudeof the disturbance at the most unstable frequency before transition; and (3) the viscous instability mode ispromoted on the grooved surface, due to the thinning of the boundary layer behind the groove.展开更多
This paper presents experimental studies on bypass transition of separated boundary layer on low-pressure turbine airfoils,focusing on the effects of freestream turbulence on the transition process.Hot-wire probe meas...This paper presents experimental studies on bypass transition of separated boundary layer on low-pressure turbine airfoils,focusing on the effects of freestream turbulence on the transition process.Hot-wire probe measurements are performed on the suction side of an airfoil in the low-pressure linear turbine cascade at several Reynolds number conditions.Freestream turbulence is enhanced by use of turbulence grid located upstream of the cascade.The results of this experimental study show that the location of boundary layer separation does not strongly de-pend on the freestream turbulence level.However,as the freestream turbulence level increases,the size of separa-tion bubble becomes small and the location of turbulent transition moves upstream.The size of separation bubble becomes small as the Reynolds number increases.At low freestream turbulence intensity,the velocity fluctuation due to Kelvin-Helmholtz instability is observed clearly in the shear layer of the separation bubble.At high frees-tream turbulence intensity,the streak structures appear upstream of the separation location,indicating bypass transition of attached boundary layer occurs at high Reynolds number.展开更多
Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are di...Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine.展开更多
To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extracti...To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance.展开更多
The so-called ORC(Organic Rankine Cycle)heat recovery technology has attracted much attention with regard to medium and low temperature waste heat recovery.In the present study,it is applied to a Tesla turbine.At the ...The so-called ORC(Organic Rankine Cycle)heat recovery technology has attracted much attention with regard to medium and low temperature waste heat recovery.In the present study,it is applied to a Tesla turbine.At the same time,the effects of the disc speed,diameter and inter-disc gap on the internal flow field and output power of the turbine are also investigated by means of CFD(Computational Fluid Dynamics)numerical simulation,by which the pressure,velocity,and output efficiency of the internal flow field are obtained under different internal and external conditions.The highest efficiency(66.4%)is obtained for a number of nozzles equal to 4,a disk thickness of 1 mm,and a gap of 1 mm between the disks.The results of the study serve as a theoretical basis for the structural design and optimization of Tesla turbines.展开更多
Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking ...Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR.展开更多
This study focuses on a DN50 pipeline-type Savonius hydraulic turbine.The torque variation of the turbine in a rotation cycle is analyzed theoretically in the framework of the plane potential flow theory.Related numer...This study focuses on a DN50 pipeline-type Savonius hydraulic turbine.The torque variation of the turbine in a rotation cycle is analyzed theoretically in the framework of the plane potential flow theory.Related numerical simulations show that the change in turbine torque is consistent with the theoretical analysis,with the main power zone and the secondary power zone exhibiting a positive torque.In contrast,the primary resistance zone and the secondary resistance zone are characterized by a negative torque.Analytical relationships between the turbine’s internal flow angleθ,the deflector’s inclination angleα0,and the coverage angleαof the power zone are introduced,and a method for calculating the optimal number of blades is proposed to maximize the power zone.Results are presented about performance tests conducted on five groups of hydraulic turbines with the blade number ranging from 3 to 7.Such results indicate that both the turbine’s recovery power and efficiency attain the highest values when the blade number is 4,which is in agreement with the number of blades calculated by the proposed method.Additionally,the study examines the effects of the flow rate on turbine parameters and the projected energy generation and cost savings for a specific pipeline configuration.展开更多
The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines.In particular,two icing processes(fr...The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines.In particular,two icing processes(frost ice and clear ice)were examined by combining the FENSAP-ICE and FLUENT analysis tools.The ice type on the blade surfaces was predicted by using a multi-time step method.Accordingly,the influence of variations in icing shape and ice surface roughness on the aerodynamic performance of blades during frost ice formation or clear ice formation was investigated.The results indicate that differences in blade surface roughness and heat flux lead to disparities in both ice formation rate and shape between frost ice and clear ice.Clear ice has a greater impact on aerodynamics compared to frost ice,while frost ice is significantly influenced by the roughness of its icy surface.展开更多
Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform...Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method.展开更多
In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily re...In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines.展开更多
To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experimen...To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experiments,the natural frequencies of trailing-edge worn blades-1,-2,and-3 increase the most in the second to fourth order,thefifth order increases in the middle,and thefirst order increases the least.The damping ratio data indi-cate that,in general,thefirstfive-order damping ratios of trailing-edge worn blades-1 and trailing-edge worn blades-2 are reduced,and thefirstfive-order damping ratios of trailing-edge worn blades-3 are slightly improved.The mode shape diagram shows that the trailing-edge worn blades-1 and-2 have a large swing in the tip and the blade,whereas the second-and third-order vibration shapes of the trailing edge-worn blade-3 tend to be improved.Overall,all these results reveal that the blade’s mass and the wear area are the main fac-tors affecting the vibration characteristics of wind turbine blades.展开更多
A combined experimental and numerical research study is conducted to investigate the complex relationship between the structure and the aerodynamic performances of an Archimedes spiral wind turbine(ASWT).Two ASWTs are...A combined experimental and numerical research study is conducted to investigate the complex relationship between the structure and the aerodynamic performances of an Archimedes spiral wind turbine(ASWT).Two ASWTs are considered,a prototypical version and an improved version.It is shown that the latter achieves the best aerodynamic performance when the spread angles at the three sets of blades areα_(1)=30°,α_(2)=55°,α3=60°,respectively and the blade thickness is 4 mm.For a velocity V=10 m/s,a tip speed ratio(TSR)=1.58 and 2,the maximum CP values are 0.223 and 0.263 for the prototypical ASWT and improved ASWT,respectively,and the maximum C_(P) enhancement is 17.93%.For V=10 m/s and TSR=2,the CP values of the prototypical ASWT and improved ASWT are 0.225 and 0.263,respectively,with an aerodynamic performance enhancement of 16.88%.Through mutual verification of the test outcomes and numerical results,it is concluded that the proposed approach can effectively lead to aerodynamic performance improvement.展开更多
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau...With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.展开更多
As offshore wind farms expand into deeper and farther ocean regions and the unit capacity of offshore wind turbines(OWTs)increases,there is a pressing need for a new foundation structure that can accommodate deep-sea ...As offshore wind farms expand into deeper and farther ocean regions and the unit capacity of offshore wind turbines(OWTs)increases,there is a pressing need for a new foundation structure that can accommodate deep-sea conditions and support large capacities while maintaining economical and safe.To meet this goal of integrated transportation and one-step installation,a novel five-bucket jacket foundation(FBJF),with its suction installation and leveling methods in sand,has been proposed,analyzed and experimentally studied.First,seepage failure experiments of the FBJF at various depths were conducted,and a formula for calculating the critical suction of seepage failure suitable for the FBJF in sand was chosen and recommended for use with a range of values for the permeability coefficient ratio.Second,through leveling experiments of the FBJF at different depths,the maximum adjustable leveling angle during the sinking process was defined using seepage failure and the adjustable leveling angle of the foundation as control criteria.Various leveling control strategies were proposed and verified.Finally,an automatic sinking and leveling control system for the FBJF was developed and experimentally verified for feasibility.展开更多
基金support for this work was provided by the National Natural Science Foundation of China(No.52206060)the National Science and Technology Major Project of China(Nos.J2019-Ⅱ-0021-0042 and J2019-Ⅱ-0002-0022).
文摘The design of high-lift Low-Pressure Turbines(LPTs)causes the separation of the boundary layer on the suction side of the blade and leads to a strong secondary flow.This present study aims to minimize secondary losses through endwall slot suction and incoming wakes in a front-loaded high-lift LPT cascade with Zweifel of 1.58 under low Reynolds number of 25000.Two slotted schemes for the boundary layer of the endwall were designed(Plan A and Plan B),and the effects of suction mass flow on secondary flow were studied.The underlying physics of the endwall boundary layer of the suction and secondary flow under unsteady wakes was discussed.The results show that slot suction at the endwall boundary layer can significantly suppress the secondary flow by removing low-momentum fluids.Plans A and B significantly reduced the secondary kinetic energy by 44.2%and 36.9%,respectively,compared with the baseline cascade at the suction mass flow ratios of 1%.With an increase in the mass flow ratio of suction,the secondary flow was gradually reduced in both Plans A and B.It is more beneficial to control the secondary flow to destroy the intersection of the pressure side and suction side of the horseshoe vortex before it develops into a passage vortex.Under unsteady wakes,the combined effects of incoming wakes and endwall boundary layer suction can further suppress the secondary flow at the suction mass flow ratios of 2%for Plan A,because the positive and negative vorticity inside upstream wakes accelerated the mixing of the main flow and secondary flow and thus increased the energy of secondary vortices.
基金This study was supported by the National Science and Technology Major Project,China(No.J2019-II-0012-0032),which is gratefully acknowledged.
文摘Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reduction.Therefore,this uncertainty impact on ultra-highly loaded blades under extreme operational conditions near the margins with potential large-scale open separation is focused on in this study.It is demonstrated that this impact is significant,unfavourable,and nonlinear,which is clearly severer under extreme conditions.In addition to the overall attenuation and notable scattering of specific performance,the operational margins with open separation are also notably scattered with great risk of significant reduction.This scattering and nonlinearity are dominated by the variations in leading-edge thickness.The thinning of leading edge triggers local transition,enhancing downstream friction and reducing resistance to open separation,which is further exacerbated by operational deterioration.However,the opposite thickening yields less benefit,implying nonlinearity.This unfavourable impact highlights the need for robust aerodynamic design,where both a safer operational condition and a more robust blade are indispensable,i.e.,a compromise among performance,weight,and robustness.Besides the necessary limitation of loading levels,a mid-loaded design is recommended to reduce adverse pressure gradients in both the leading edge and rear region of the suction side,which helps to decrease the susceptibility of the transition and open separation to random perturbations.Similar improvements can also be achieved by appropriately thickening the leading edge.
文摘The effects induced by the presence of incoming wakes on the boundary layer developing over a high-lift low-pressure turbine profile have been investigated in a linear cascade at mid-span.The tested Reynolds number is 70000,typical of the cruise operating condition.The results of the investigations performed under steady and unsteady inflow conditions are analyzed.The unsteady investigations have been performed at the reduced frequency of f+=0.62,representative of the real engine operating condition.Profile aerodynamic loadings as well as boundary layer velocity profiles have been measured to survey the separation and transition processes.Spectral analysis has been also performed to better understand the phenomena associated with the transition process under steady inflow.For the unsteady case,a phase-locked ensemble averaging technique has been employed to reconstruct the time-resolved boundary layer velocity distributions from the hot-wire instantaneous signal output.The ensemble-averaging technique allowed a detailed analysis of the effects induced by incoming wakes-boundary layer interaction in separation suppression.Time-resolved results are presented in terms of mean velocity and unresolved unsteadiness time-space plots.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51121004)the National Natural Science Foundation of China(Grant No.50976026)
文摘The aim of this paper is to predict the phenomenon of laminar separation, transition and reattachment in a low-pressure turbine (LPT). Self-developed large eddy simulation program of compressible N-S equations was used to describe the flow structures of T 106A LPT blade profile at Reynolds number of 1.1×10^5 based on the exit isentropic velocity and chord length. The com- putational results show the distributions of time-averaged wall-static pressure coefficient and mean skin-friction coefficient on the blade surface. The locations of laminar separation and reattachment points occur around 87% and 98% axial chord, which agree well with experiment data. The two-dimensional shear layer is gradually unstable along the downstream half of the suc- tion side as a result of the spanwise fluctuation and the roll up of shear layer via Kelvin-Helmholtz (KH) instability. Three-dimensional motions appear near 84% axial chord which later triggers spanwise vortexes and streamwise vortexes, leading to transition to turbulence in the separation bubble. Through introducing the concept of dissipation function, the high loss mainly comes from the places where strong shear layer and intense fluctuation exist. Furthermore, the separation region is only an accumulation center of the low-energy fluid rather than an area of loss source.
基金provided by the National Natural Science Foundation of China(Nos.51876202 and 51836008)。
文摘Detailed experimental measurements were conducted to study the interactions between incoming wakes and endwall secondary flow in a high-lift Low-Pressure Turbine(LPT)cascade.All of the measurements were conducted in both the presence and absence of incoming wakes,and numerical analysis was performed to elucidate the flow mechanism.With increasing Reynolds number,the influence of the incoming wakes on suppressing the secondary flow gradually increased owing to the greater influence of incoming wakes on reducing the negative incidence angle at higher Reynolds numbers,leading to a lower blade loading near the leading edge and suppression of the Pressure Side(PS)leg of the horseshoe vortex.However,the effect of unsteady wakes on suppressing the profile losses gradually became weaker owing to the reduced size of the Suction Side(SS)separation bubble and increased mixing loss in the free-flow region at high Reynolds numbers.Incoming wakes clearly improved the aerodynamic performance of the low-pressure turbine cascade at low Reynolds numbers of 25,000 and 50,000.In contrast,at the high Reynolds number of 100,000,the profile loss at the midspan and mass-averaged total losses downstream of the cascade were higher in the presence of wakes than in the absence of wakes,and the unsteady wakes exerted a negative influence on the aerodynamic performance of the LPT cascade.
文摘LES (Large-Eddy Simulation) computations were preformed to investigate the mechanisms of a kind of spanwisegroove for the passive control of laminar separation bubble on the suction surface of a low-speed highly loadedlow-pressure turbine blade at Re = 50,000 (Reynolds number, based on inlet velocity and axial chord length).Compared with the smooth suction surface, the numerical results indicate that: (1) the groove is effective toshorten and thin the separation bubble, which contributes the flow loss reduction on the groove surface, by thinningthe boundary layer behind the groove and promoting earlier transition inception in the separation bubble; (2)upstream movement of the transition inception location on the grooved surface is suggested being the result of thelower frequency at which the highest amplification rate of instability waves occurs, and the larger initial amplitudeof the disturbance at the most unstable frequency before transition; and (3) the viscous instability mode ispromoted on the grooved surface, due to the thinning of the boundary layer behind the groove.
文摘This paper presents experimental studies on bypass transition of separated boundary layer on low-pressure turbine airfoils,focusing on the effects of freestream turbulence on the transition process.Hot-wire probe measurements are performed on the suction side of an airfoil in the low-pressure linear turbine cascade at several Reynolds number conditions.Freestream turbulence is enhanced by use of turbulence grid located upstream of the cascade.The results of this experimental study show that the location of boundary layer separation does not strongly de-pend on the freestream turbulence level.However,as the freestream turbulence level increases,the size of separa-tion bubble becomes small and the location of turbulent transition moves upstream.The size of separation bubble becomes small as the Reynolds number increases.At low freestream turbulence intensity,the velocity fluctuation due to Kelvin-Helmholtz instability is observed clearly in the shear layer of the separation bubble.At high frees-tream turbulence intensity,the streak structures appear upstream of the separation location,indicating bypass transition of attached boundary layer occurs at high Reynolds number.
基金financially supported by the National Natural Science Foundation of China through Grant Nos.12372338 and U2241272the Natural Science Foundation of Shaanxi Province of China through Grant Nos.2023-JC-YB-352 and 2022JZ-20+1 种基金the Guangdong Basic and Applied Basic Research Foundation through Grant No.2023A1515011663the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University through Grant No.PF2023010。
文摘Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine.
基金supported by the National Natural Science Foundation Projects(Grant Number 51966018)the Chongqing Natural Science Foundation of China(Grant Number cstc2020jcyjmsxmX0314)+2 种基金the Key Research&Development Program of Xinjiang(Grant Number 2022B01003)Ningxia Key Research and Development Program of Foreign Science and Technology Cooperation Projects(202204)the Key Scientific Research Project in Higher Education Institution from the Ningxia Education Department(2022115).
文摘To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance.
基金the National Natural Science Foundation of China(No.51876114)Shanghai Engineering Research Center of Marine Renewable Energy(Grant No.19DZ2254800).
文摘The so-called ORC(Organic Rankine Cycle)heat recovery technology has attracted much attention with regard to medium and low temperature waste heat recovery.In the present study,it is applied to a Tesla turbine.At the same time,the effects of the disc speed,diameter and inter-disc gap on the internal flow field and output power of the turbine are also investigated by means of CFD(Computational Fluid Dynamics)numerical simulation,by which the pressure,velocity,and output efficiency of the internal flow field are obtained under different internal and external conditions.The highest efficiency(66.4%)is obtained for a number of nozzles equal to 4,a disk thickness of 1 mm,and a gap of 1 mm between the disks.The results of the study serve as a theoretical basis for the structural design and optimization of Tesla turbines.
基金supported in part by the National Natural Science Foundation of China under grants 62202044 and 62372039Scientific and Technological Innovation Foundation of Foshan under grant BK22BF009+3 种基金Excellent Youth Team Project for the Central Universities under grant FRF-EYIT-23-01Fundamental Research Funds for the Central Universities under grants 06500103 and 06500078Guangdong Basic and Applied Basic Research Foundation under grant 2022A1515240044Beijing Natural Science Foundation under grant 4232040.
文摘Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR.
基金Gansu Outstanding Youth Fund(20JR10RA203)Gansu Province Youth Doctor Fund(2023QB-033)+1 种基金National Natural Science Foundation of China(52169019)the Gansu Industry-University Support Fund(2020C-20).
文摘This study focuses on a DN50 pipeline-type Savonius hydraulic turbine.The torque variation of the turbine in a rotation cycle is analyzed theoretically in the framework of the plane potential flow theory.Related numerical simulations show that the change in turbine torque is consistent with the theoretical analysis,with the main power zone and the secondary power zone exhibiting a positive torque.In contrast,the primary resistance zone and the secondary resistance zone are characterized by a negative torque.Analytical relationships between the turbine’s internal flow angleθ,the deflector’s inclination angleα0,and the coverage angleαof the power zone are introduced,and a method for calculating the optimal number of blades is proposed to maximize the power zone.Results are presented about performance tests conducted on five groups of hydraulic turbines with the blade number ranging from 3 to 7.Such results indicate that both the turbine’s recovery power and efficiency attain the highest values when the blade number is 4,which is in agreement with the number of blades calculated by the proposed method.Additionally,the study examines the effects of the flow rate on turbine parameters and the projected energy generation and cost savings for a specific pipeline configuration.
基金Natural Science Foundation of Liaoning Province(2022-MS-305)Foundation of Liaoning Province Education Administration(LJKZ1108).
文摘The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines.In particular,two icing processes(frost ice and clear ice)were examined by combining the FENSAP-ICE and FLUENT analysis tools.The ice type on the blade surfaces was predicted by using a multi-time step method.Accordingly,the influence of variations in icing shape and ice surface roughness on the aerodynamic performance of blades during frost ice formation or clear ice formation was investigated.The results indicate that differences in blade surface roughness and heat flux lead to disparities in both ice formation rate and shape between frost ice and clear ice.Clear ice has a greater impact on aerodynamics compared to frost ice,while frost ice is significantly influenced by the roughness of its icy surface.
基金supported by the National Natural Science Foundation of China (52071055)the Fundamental Research Funds for the Central Universities (Grant No.DUT22QN237).
文摘Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method.
基金This research was funded by the Basic Research Funds for Universities in Inner Mongolia Autonomous Region(No.JY20220272)the Scientific Research Program of Higher Education in InnerMongolia Autonomous Region(No.NJZZ23080)+3 种基金the Natural Science Foundation of InnerMongolia(No.2023LHMS05054)the NationalNatural Science Foundation of China(No.52176212)We are also very grateful to the Program for Innovative Research Team in Universities of InnerMongolia Autonomous Region(No.NMGIRT2213)The Central Guidance for Local Scientific and Technological Development Funding Projects(No.2022ZY0113).
文摘In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines.
基金supported by the National Natural Science Foundation Project(Nos.51966018 and 51466015)the Key Research&Development Program of Xinjiang(Grant No.2022B01003).
文摘To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experiments,the natural frequencies of trailing-edge worn blades-1,-2,and-3 increase the most in the second to fourth order,thefifth order increases in the middle,and thefirst order increases the least.The damping ratio data indi-cate that,in general,thefirstfive-order damping ratios of trailing-edge worn blades-1 and trailing-edge worn blades-2 are reduced,and thefirstfive-order damping ratios of trailing-edge worn blades-3 are slightly improved.The mode shape diagram shows that the trailing-edge worn blades-1 and-2 have a large swing in the tip and the blade,whereas the second-and third-order vibration shapes of the trailing edge-worn blade-3 tend to be improved.Overall,all these results reveal that the blade’s mass and the wear area are the main fac-tors affecting the vibration characteristics of wind turbine blades.
基金supported by the National Natural Science Foundation of China.Project under Grant(Nos.51966018 and 51466015).
文摘A combined experimental and numerical research study is conducted to investigate the complex relationship between the structure and the aerodynamic performances of an Archimedes spiral wind turbine(ASWT).Two ASWTs are considered,a prototypical version and an improved version.It is shown that the latter achieves the best aerodynamic performance when the spread angles at the three sets of blades areα_(1)=30°,α_(2)=55°,α3=60°,respectively and the blade thickness is 4 mm.For a velocity V=10 m/s,a tip speed ratio(TSR)=1.58 and 2,the maximum CP values are 0.223 and 0.263 for the prototypical ASWT and improved ASWT,respectively,and the maximum C_(P) enhancement is 17.93%.For V=10 m/s and TSR=2,the CP values of the prototypical ASWT and improved ASWT are 0.225 and 0.263,respectively,with an aerodynamic performance enhancement of 16.88%.Through mutual verification of the test outcomes and numerical results,it is concluded that the proposed approach can effectively lead to aerodynamic performance improvement.
基金Fundamental Research Funds for the National Natural Science Foundation of China under Grant No.52078084the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0623)+2 种基金the 111 project of the Ministry of Educationthe Bureau of Foreign Experts of China under Grant No.B18062China Postdoctoral Science Foundation under Grant No.2021M690838。
文摘With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.
基金financially supported by the Open Foundation of State Key Laboratory of Hydraulic Engineering Simulation and Safety of Tianjin University(Grant No.HESS-2002)。
文摘As offshore wind farms expand into deeper and farther ocean regions and the unit capacity of offshore wind turbines(OWTs)increases,there is a pressing need for a new foundation structure that can accommodate deep-sea conditions and support large capacities while maintaining economical and safe.To meet this goal of integrated transportation and one-step installation,a novel five-bucket jacket foundation(FBJF),with its suction installation and leveling methods in sand,has been proposed,analyzed and experimentally studied.First,seepage failure experiments of the FBJF at various depths were conducted,and a formula for calculating the critical suction of seepage failure suitable for the FBJF in sand was chosen and recommended for use with a range of values for the permeability coefficient ratio.Second,through leveling experiments of the FBJF at different depths,the maximum adjustable leveling angle during the sinking process was defined using seepage failure and the adjustable leveling angle of the foundation as control criteria.Various leveling control strategies were proposed and verified.Finally,an automatic sinking and leveling control system for the FBJF was developed and experimentally verified for feasibility.