期刊文献+
共找到105,826篇文章
< 1 2 250 >
每页显示 20 50 100
A Perturbation Analysis of Low-Rank Matrix Recovery by Schatten p-Minimization
1
作者 Zhaoying Sun Huimin Wang Zhihui Zhu 《Journal of Applied Mathematics and Physics》 2024年第2期475-487,共13页
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with... A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP. 展开更多
关键词 Nonconvex Schatten p-Norm low-rank matrix Recovery p-Null Space Property the Restricted Isometry Property
下载PDF
Proximity point algorithm for low-rank matrix recovery from sparse noise corrupted data
2
作者 朱玮 舒适 成礼智 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第2期259-268,共10页
The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can b... The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm. 展开更多
关键词 low-rank matrix recovery sparse noise Douglas-Rachford splitting method proximity operator
下载PDF
RGBD Salient Object Detection by Structured Low-Rank Matrix Recovery and Laplacian Constraint 被引量:1
3
作者 Chang Tang Chunping Hou 《Transactions of Tianjin University》 EI CAS 2017年第2期176-183,共8页
A structured low-rank matrix recovery model for RGBD salient object detection is proposed. Firstly, the problem is described by a low-rank matrix recovery, and the hierarchical structure of RGB image is added to the s... A structured low-rank matrix recovery model for RGBD salient object detection is proposed. Firstly, the problem is described by a low-rank matrix recovery, and the hierarchical structure of RGB image is added to the sparsity term. Secondly, the depth information is fused into the model by a Laplacian regularization term to ensure that the image regions which share similar depth value will be allocated to similar saliency value. Thirdly, a variation of alternating direction method is proposed to solve the proposed model. Finally, both quantitative and qualitative experimental results on NLPR1000 and NJU400 show the advantage of the proposed RGBD salient object detection model. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Laplace transforms Object recognition RECOVERY
下载PDF
Improved nonconvex optimization model for low-rank matrix recovery 被引量:1
4
作者 李玲芝 邹北骥 朱承璋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期984-991,共8页
Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recov... Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods. 展开更多
关键词 machine learning computer vision matrix recovery nonconvex optimization
下载PDF
LOW-RANK MATRIX COMPLETION WITH POISSON OBSERVATIONS VIA NUCLEAR NORM AND TOTAL VARIATION CONSTRAINTS
5
作者 Duo Qiu Michael K.Ng Xiongjun Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2024年第6期1427-1451,共25页
In this paper,we study the low-rank matrix completion problem with Poisson observations,where only partial entries are available and the observations are in the presence of Poisson noise.We propose a novel model compo... In this paper,we study the low-rank matrix completion problem with Poisson observations,where only partial entries are available and the observations are in the presence of Poisson noise.We propose a novel model composed of the Kullback-Leibler(KL)divergence by using the maximum likelihood estimation of Poisson noise,and total variation(TV)and nuclear norm constraints.Here the nuclear norm and TV constraints are utilized to explore the approximate low-rankness and piecewise smoothness of the underlying matrix,respectively.The advantage of these two constraints in the proposed model is that the low-rankness and piecewise smoothness of the underlying matrix can be exploited simultaneously,and they can be regularized for many real-world image data.An upper error bound of the estimator of the proposed model is established with high probability,which is not larger than that of only TV or nuclear norm constraint.To the best of our knowledge,this is the first work to utilize both low-rank and TV constraints with theoretical error bounds for matrix completion under Poisson observations.Extensive numerical examples on both synthetic data and real-world images are reported to corroborate the superiority of the proposed approach. 展开更多
关键词 low-rank matrix completion Nuclear norm Total variation Poisson observations
原文传递
Low-rank matrix recovery with total generalized variation for defending adversarial examples
6
作者 Wen LI Hengyou WANG +4 位作者 Lianzhi HUO Qiang HE Linlin CHEN Zhiquan HE Wing W.Y.Ng 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第3期432-445,共14页
Low-rank matrix decomposition with first-order total variation(TV)regularization exhibits excellent performance in exploration of image structure.Taking advantage of its excellent performance in image denoising,we app... Low-rank matrix decomposition with first-order total variation(TV)regularization exhibits excellent performance in exploration of image structure.Taking advantage of its excellent performance in image denoising,we apply it to improve the robustness of deep neural networks.However,although TV regularization can improve the robustness of the model,it reduces the accuracy of normal samples due to its over-smoothing.In our work,we develop a new low-rank matrix recovery model,called LRTGV,which incorporates total generalized variation(TGV)regularization into the reweighted low-rank matrix recovery model.In the proposed model,TGV is used to better reconstruct texture information without over-smoothing.The reweighted nuclear norm and Li-norm can enhance the global structure information.Thus,the proposed LRTGV can destroy the structure of adversarial noise while re-enhancing the global structure and local texture of the image.To solve the challenging optimal model issue,we propose an algorithm based on the alternating direction method of multipliers.Experimental results show that the proposed algorithm has a certain defense capability against black-box attacks,and outperforms state-of-the-art low-rank matrix recovery methods in image restoration. 展开更多
关键词 Total generalized variation low-rank matrix Alternating direction method of multipliers Adversarial example
原文传递
Neurocircuit regeneration by extracellular matrix reprogramming
7
作者 Shengzhang Su Ian N.Levasseur Kimberly M.Alonge 《Neural Regeneration Research》 SCIE CAS 2025年第8期2300-2301,共2页
The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio... The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases. 展开更多
关键词 matrix PROGRAMMING
下载PDF
Stiffness-tunable biomaterials provide a good extracellular matrix environment for axon growth and regeneration
8
作者 Ronglin Han Lanxin Luo +4 位作者 Caiyan Wei Yaru Qiao Jiming Xie Xianchao Pan Juan Xing 《Neural Regeneration Research》 SCIE CAS 2025年第5期1364-1376,共13页
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p... Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering. 展开更多
关键词 ALGINATE axon growth BIOMATERIALS extracellular matrix neural repair neurons NEUROREGENERATION POLYACRYLAMIDE POLYDIMETHYLSILOXANE stiffness
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
9
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
Stable recovery of low-rank matrix via nonconvex Schatten p-minimization 被引量:3
10
作者 CHEN WenGu LI YaLing 《Science China Mathematics》 SCIE CSCD 2015年第12期2643-2654,共12页
In this paper, a sufficient condition is obtained to ensure the stable recovery(ε≠ 0) or exact recovery(ε = 0) of all r-rank matrices X ∈ Rm×nfrom b = A(X) + z via nonconvex Schatten p-minimization for anyδ4... In this paper, a sufficient condition is obtained to ensure the stable recovery(ε≠ 0) or exact recovery(ε = 0) of all r-rank matrices X ∈ Rm×nfrom b = A(X) + z via nonconvex Schatten p-minimization for anyδ4r∈ [3~(1/2))2, 1). Moreover, we determine the range of parameter p with any given δ4r∈ [(3~(1/2))/22, 1). In fact, for any given δ4r∈ [3~(1/2))2, 1), p ∈(0, 2(1- δ4r)] suffices for the stable recovery or exact recovery of all r-rank matrices. 展开更多
关键词 low-rank matrix recovery restricted isometry constant Schatten p-minimization
原文传递
Pairwise constraint propagation via low-rank matrix recovery
11
作者 Zhenyong Fu 《Computational Visual Media》 2015年第3期211-220,共10页
As a kind of weaker supervisory information, pairwise constraints can be exploited to guide the data analysis process, such as data clustering. This paper formulates pairwise constraint propagation, which aims to pred... As a kind of weaker supervisory information, pairwise constraints can be exploited to guide the data analysis process, such as data clustering. This paper formulates pairwise constraint propagation, which aims to predict the large quantity of unknown constraints from scarce known constraints, as a low-rank matrix recovery(LMR) problem. Although recent advances in transductive learning based on matrix completion can be directly adopted to solve this problem, our work intends to develop a more general low-rank matrix recovery solution for pairwise constraint propagation, which not only completes the unknown entries in the constraint matrix but also removes the noise from the data matrix. The problem can be effectively solved using an augmented Lagrange multiplier method. Experimental results on constrained clustering tasks based on the propagated pairwise constraints have shown that our method can obtain more stable results than state-of-the-art algorithms,and outperform them. 展开更多
关键词 semi-supervised learning pairwise constraint propagation low-rank matrix recovery(LMR) constrained clustering matrix completion
原文传递
Robust Principal Component Analysis Integrating Sparse and Low-Rank Priors
12
作者 Wei Zhai Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期1-13,共13页
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal... Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements. 展开更多
关键词 Robust Principal Component Analysis Sparse matrix low-rank matrix Hyperspectral Image
下载PDF
Decentralized and Privacy-Preserving Low-Rank Matrix Completion 被引量:1
13
作者 An-Ya Lin Qing Ling 《Journal of the Operations Research Society of China》 EI CSCD 2015年第2期189-205,共17页
In this paper,we propose a decentralized algorithm to solve the low-rank matrix completion problem and analyze its privacy-preserving property.Suppose that we want to recover a low-rank matrix D=[D1,D2,・・・,DL]from a s... In this paper,we propose a decentralized algorithm to solve the low-rank matrix completion problem and analyze its privacy-preserving property.Suppose that we want to recover a low-rank matrix D=[D1,D2,・・・,DL]from a subset of its entries.In a network composed of L agents,each agent i observes some entries of Di.We factorize the unknown matrix D as the product of a public matrix X which is common to all agents and a private matrix Y=[Y1,Y2,・・・,YL]of which Yi is held by agent i only.Each agent i updates Yi and its local estimate of X,denoted by X(i),in an alternating manner.Through exchanging information with neighbors,all the agents move toward a consensus on the estimates X(i).Once the consensus is(nearly)reached throughout the network,each agent i recovers Di=X(i)Yi,thus D is recovered.In this progress,communication through the network may disclose sensitive information about the data matrices Di to a malicious agent.We prove that in the proposed algorithm,D-LMaFit,if the network topology is well designed,the malicious agent is unable to reconstruct the sensitive information from others. 展开更多
关键词 Decentralized algorithm matrix completion PRIVACY-PRESERVING
原文传递
基于Doehlert Matrix的全贯流泵装置定转子进出流间隙优化设计
14
作者 刘健峰 奚望 +2 位作者 陆伟刚 陆雯 杨晨霞 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期170-180,共11页
全贯流泵是一种新型的机电-水泵一体式贯流泵,然而其在运行时存在定转子间隙回流,扰乱了叶轮内的流场分布,导致泵装置产生能量损失、压力波动和噪声等问题,影响泵站的正常运行。通过数值模拟和模型试验研究全贯流泵装置定转子间隙流的... 全贯流泵是一种新型的机电-水泵一体式贯流泵,然而其在运行时存在定转子间隙回流,扰乱了叶轮内的流场分布,导致泵装置产生能量损失、压力波动和噪声等问题,影响泵站的正常运行。通过数值模拟和模型试验研究全贯流泵装置定转子间隙流的水力特性,结合Doehlert Matrix设计-响应面优化法对其定转子进、出流间隙结构进行优化设计,揭示全贯流泵装置定转子进、出流间隙结构对泵装置性能的影响机理,并得到最终优化的折角式定转子进、出流间隙结构方案为:外侧延伸段长度t1为4.921r,外侧收缩段长度x1为0.624r,内侧延伸段长度t2为3.655r,内侧收缩段长度x2为1.6r(r为定转子间隙宽度),使得全贯流泵装置扬程和效率分别提升约10.3%和5.2%。 展开更多
关键词 全贯流泵 定转子间隙流 Doehlert matrix设计
下载PDF
Sparse photoacoustic microscopy based on low-rank matrix approximation
15
作者 刘婷 孙明健 +3 位作者 冯乃章 王明华 陈德应 沈毅 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第9期62-66,共5页
As a high-resulotion biological imaging technology, photoacoustic microscopy(PAM) is difficult to use in realtime imaging due to the long data acquisition time. Herein, a fast data acquisition and image recovery met... As a high-resulotion biological imaging technology, photoacoustic microscopy(PAM) is difficult to use in realtime imaging due to the long data acquisition time. Herein, a fast data acquisition and image recovery method named sparse PAM based on a low-rank matrix approximation is proposed. Specifically, the process to recover the final image from incomplete data is formulated into a low-rank matrix completion framework, and the "Go Decomposition" algorithm is utilized to solve the problem. Finally, both simulated and real PAM experiments are conducted to verify the performance of the proposed method and demonstrate clinical potential for many biological diseases. 展开更多
关键词 Data acquisition Image processing Imaging techniques matrix algebra
原文传递
Factors influencing Frey syndrome after parotidectomy with acellular dermal matrix 被引量:1
16
作者 Xian-Da Chai Huan Jiang +2 位作者 Ling-Ling Tang Jing Zhang Long-Fei Yue 《World Journal of Clinical Cases》 SCIE 2024年第9期1578-1584,共7页
BACKGROUND Frey syndrome,also known as ototemporal nerve syndrome or gustatory sweating syndrome,is one of the most common complications of parotid gland surgery.This condition is characterized by abnormal sensations ... BACKGROUND Frey syndrome,also known as ototemporal nerve syndrome or gustatory sweating syndrome,is one of the most common complications of parotid gland surgery.This condition is characterized by abnormal sensations in the facial skin accompanied by episodes of flushing and sweating triggered by cognitive processes,visual stimuli,or eating.AIM To investigate the preventive effect of acellular dermal matrix(ADM)on Frey syndrome after parotid tumor resection and analyzed the effects of Frey syndrome across various surgical methods and other factors involved in parotid tumor resection.METHODS Retrospective data from 82 patients were analyzed to assess the correlation between sex,age,resection sample size,operation time,operation mode,ADM usage,and occurrence of postoperative Frey syndrome.RESULTS Among the 82 patients,the incidence of Frey syndrome was 56.1%.There were no significant differences in sex,age,or operation time between the two groups(P>0.05).However,there was a significant difference between ADM implantation and occurrence of Frey syndrome(P<0.05).ADM application could reduce the variation in the incidence of Frey syndrome across different operation modes.CONCLUSION ADM can effectively prevent Frey syndrome and delay its onset. 展开更多
关键词 Parotid gland tumor Frey syndrome Acellular dermal matrix Acellular allogenic dermal matrix
下载PDF
Amino-functionalized UiO-66-doped mixed matrix membranes with high permeation performance and fouling resistance 被引量:1
17
作者 Yi Zhang Di Liu +6 位作者 Zhaoli Wang Junjian Yu Yanyin Cheng Wenjing Li Zhe Wang Hongzhe Ni Yuchao Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期68-77,共10页
For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then ... For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins. 展开更多
关键词 ULTRAFILTRATION Mixed matrix membranes Amino functionalization Hydrophilic modification Negatively charged
下载PDF
Recent progress in ternary mixed matrix membranes for CO_(2) separation 被引量:1
18
作者 Zikang Qin Yulei Ma +13 位作者 Jing Wei Hongfang Guo Bangda Wang Jing Deng Chunhai Yi Nanwen Li Shouliang Yi Yi Deng Wentao Du Jian Shen Wenju Jiang Lu Yao Lin Yang Zhongde Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期831-858,共28页
Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,s... Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed. 展开更多
关键词 CO_(2) separation Mixed matrix membranes Ternary phase
下载PDF
High quality repair of osteochondral defects in rats using the extracellular matrix of antler stem cells 被引量:1
19
作者 Yu-Su Wang Wen-Hui Chu +4 位作者 Jing-Jie Zhai Wen-Ying Wang Zhong-Mei He Quan-Min Zhao Chun-Yi Li 《World Journal of Stem Cells》 SCIE 2024年第2期176-190,共15页
BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown... BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship. 展开更多
关键词 Osteochondral defect repair Mesenchymal stem cells Extracellular matrix DECELLULARIZATION Antler stem cells Reserve mesenchymal cells Xenogeneic
下载PDF
Estimating Functional Brain Network with Low-Rank Structure via Matrix Factorization for MCI/ASD Identification
20
作者 Yue Du Limei Zhang 《Journal of Applied Mathematics and Physics》 2021年第8期1946-1963,共18页
Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been propose... Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been proposed currently, including the low-order Pearson’s correlation (PC) and sparse representation (SR), as well as the high-order functional connection (HoFC). However, most existing methods usually ignore the information of topological structures of FBN, such as low-rank structure which can reduce the noise and improve modularity to enhance the stability of networks. In this paper, we propose a novel method for improving the estimated FBNs utilizing matrix factorization (MF). More specifically, we firstly construct FBNs based on three traditional methods, including PC, SR, and HoFC. Then, we reduce the rank of these FBNs via MF model for estimating FBN with low-rank structure. Finally, to evaluate the effectiveness of the proposed method, experiments have been conducted to identify the subjects with mild cognitive impairment (MCI) and autism spectrum disorder (ASD) from norm controls (NCs) using the estimated FBNs. The results on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and Autism Brain Imaging Data Exchange (ABIDE) dataset demonstrate that the classification performances achieved by our proposed method are better than the selected baseline methods. 展开更多
关键词 Functional Brain Network matrix Factorization Pearson’s Correlation Sparse Representation High-Order Functional Connection Mild Cognitive Impairment Autism Spectrum Disorder
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部