Low thermal conductivity of binary fatty acid mixture of palmitic and lauric acids(PA-LA)within the value range of 0.15-0.17 W/(m·K)restricts its wide utilization as thermal energy storage material in the active ...Low thermal conductivity of binary fatty acid mixture of palmitic and lauric acids(PA-LA)within the value range of 0.15-0.17 W/(m·K)restricts its wide utilization as thermal energy storage material in the active regime of solar heating applications at low operating temperatures.Nevertheless,this mixture as phase change material(PCM)has a suitable phase-change temperature and heat of 36℃and 176.3 J/g,respectively.Hence,the objective of this study is to formulate a novel form-stable composite PCM with the PA-LA mixture and expanded graphite(EG)as a thermal enhancer.PA-LA eutectic mixture with varied concentrations of EG was prepared and characterized.The thermal conductivity of PA-LA/EG increased gradually with the mass of EG.Optimum thermal properties were observed in PA-LA/(5%EG)composite,where its melting(T_(m)),freezing temperature(T_(t)),latent melting heat and thermal conductivity was 35.53℃,34.84℃,174 J/g,and 1.19 W/(m·K),respectively.Also,the composite PCM is characterized by good chemical-thermal stability and thermal reliability for long-term usage.In conclusion,it can be utilized as a prospective form-stable PCM for thermal energy storage in solar heating systems,overheat treatment systems,and other thermal storage applications at low operating temperatures.展开更多
As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered...As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation.展开更多
In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) ...In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) (0-7% by weight). The effect of these additives on the properties of the PIR-PUR foams, including physico-mechanical, morphological, flame retardancy, and thermal stability, was studied. Increasing amounts of EG in the PIR-PUR foam caused a significant drop in the compression strength. However, DMMP caused the mechanical properties of PIR-PUR foam to improve compared to foam filled with EG alone. The flame retardancy of PIR-PUR foams containing both EG and DMMP was enhanced significantly compared to EG filled foams. Thermogravimetric analysis (TGA) indicated that EG enhances the thermal stability of PIR-PUR foams but that DMMP decreased it. The morphology of the residual char provided conclusive evidence for the weak thermal stability of foams filled with DMMP.展开更多
In this study,orthogonal experiments were conducted to investigate the influence of expandable graphite(EG),dimethyl methylphosphonate(DMMP),triethanolamine(TEA),and isocyanate content on the compressive and bonding s...In this study,orthogonal experiments were conducted to investigate the influence of expandable graphite(EG),dimethyl methylphosphonate(DMMP),triethanolamine(TEA),and isocyanate content on the compressive and bonding strengths,oxygen index,and fluidity of rigid polyurethane foam(RPUF).The results revealed that EG significantly increased the oxygen index of RPUF,enlarged the diameter of foam cells,and decreased the cell-closed content in foam;thus,leading to a pressure drop in RPUF.However,excessive EG was capable of reducing the fluidity of polyurethane slurry.TEA exhibited significant influence on the compressive strength of RPUF,which dropped initially,and then increased.DMMP had a remarkable effect on the flame retardant property and compressive strength of RPUF.Compressive strength of RPUF initially displayed an increase followed by a decrease with increasing dosage of DMMP,and achieved the maximum value at DMMP dosage of 4%.DMMP could effectively reduce the diameter of RPUF cells leading to an increase in the percentage of close area in foam.DMMP displayed the flame-retardation effects mainly in the gas phase leading to a significant enhancement in the oxygen index of RPUF.Moreover,the compressive strength and bonding strength of RPUF decrease significantly with the increase of isocyanate content due to the increased blowing efficiency by the CO_2.The oxygen index and flowing length of foam increased with the increase in isocyanate dosage.展开更多
This work reports on the effect of commercial expandable graphite(EG)on the flammability and thermal decomposition properties of PLA-starch blend.The PLA-starch/EG composites were prepared by melt-mixing and their the...This work reports on the effect of commercial expandable graphite(EG)on the flammability and thermal decomposition properties of PLA-starch blend.The PLA-starch/EG composites were prepared by melt-mixing and their thermal stability,volatile pyrolysis products and flammability characteristics were investigated.The char residues of the composites,after combustion in a cone calorimeter,were analyzed with environmental scanning electron microscopy(ESEM).The thermal decomposition stability of the composites improved in the presence of EG.However,the char content was less than expected as per the combination of the wt%EG added into PLA-starch and the%residue of PLA-starch.The flammability performance of the PLA-starch/EG composites improved,especially at 15 wt%EG content,due to a thick and strong worm-like char structure.The peak heat release rate(PHRR)improved by 74%,the total smoke production(TSP)by 40%and the specific extinction area(SEA)by 55%.The improvements are attributed to the ability of EG to exfoliate at increased temperatures during which time three effects occurred:(i)cooling due to an endothermic exfoliation process,(ii)dilution due to release of H2O,SO2 and CO2 gases,and (iii)formation of a protective intumescent char layer.However,the CO and CO2 yields were found to be unfavorably high due to the presence of EG.展开更多
The paper deals with a new method to synthesize expand-able graphite with H2O2 as oxidizer. This method causes less environ ——mental pollution than the tradi——tional method using HNO3. Some, opti-mum technical con...The paper deals with a new method to synthesize expand-able graphite with H2O2 as oxidizer. This method causes less environ ——mental pollution than the tradi——tional method using HNO3. Some, opti-mum technical conditions have been given here. It is shorvn that traditional method for manufacturing expandable graphite with HNO3 as oxidizer can be replaced completely with H2O2 as an oxidizer. Expandable graphite made, in this way has the same characteristics as that made in traditional way, but the pollution of NO2 to air decreases greatly.展开更多
A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-...A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 m Ah g^(-1)at a current of 1 A g^(-1)after 800 cycles. This good performance may beattributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure,efficiently accommodate volume changes in the Ni Fe_2O_4-based anodes, and alleviate aggregation of Ni Fe_2O_4 nanoparticles.展开更多
A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitroge...A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitrogen adsorption.The experimental results indicated that the EGCs was not simply mechanical mixture of EG and activated carbon,instead the activated carbon was coated on the surface of interior and external pores of the EG in the form of thin carbon layer.The thickness of the activated carbon layer was nearly one hundred nanometers by calculation.It was shown that the higher the impregnation ratio and the activation temperature were,the easier the porosity development would be.And the BET surface area and the total pore volume were as high as 1978 m2/g and 0.9917 cm3/g respectively at 350℃ with an impregnation ratio of 0.9.展开更多
The friction coefficient and wear rate of pretreated graphite with liquid nitrogen were obtained by using a ball-on-disk tester,and the wear of GCr15–graphite seal pairs with the low-temperature time-dependent pretre...The friction coefficient and wear rate of pretreated graphite with liquid nitrogen were obtained by using a ball-on-disk tester,and the wear of GCr15–graphite seal pairs with the low-temperature time-dependent pretreatment was discussed by comparing the wear morphology.The results show that liquid nitrogen pretreatment can affect the hardness and interlayer spacing of graphite.The range of the friction coefficients of pretreated graphite changes from 0.17 to 0.22.With the increase of liquid nitrogen pretreatment time,the wear mechanism of graphite would change from dominated three-body wear to adhesion wear.The experimental results of the mechanical seal with liquid nitrogen pretreatment show that the wear rate of stator is less than 0.00165 mm^(3)·N^(−1)·m^(−1),and the graphite shows a good low-temperature compatibility.展开更多
The intercalation compounds of CuCl2 were synthesized with expanded graphite, whose magnitude of the electrical conductivity is about 10(3)S(.)cm(-1). Their electrical conductivity is 3 similar to6 times as high as th...The intercalation compounds of CuCl2 were synthesized with expanded graphite, whose magnitude of the electrical conductivity is about 10(3)S(.)cm(-1). Their electrical conductivity is 3 similar to6 times as high as that of the expanded graphite, and about 10 times as high as that of GIC made of the non-expanded graphite. The microanalysis results of chemical compounds by X-ray energy spectrum scanning of TEM testified that the atomic ratio of chloride and cupric is nonstoichoimetric. The multivalence and exchange of electrovalence of the cupric ion was confirmed by the XPS-ESCA. Vacancy of chlorine anion increases the concentration of charge carrier. The special stage structure, made of graphite and chloride, produces a weak chemical bond belt and provides a carrier space in the direction of GIC layer. These factors develop the electrical properties.展开更多
Aluminum-ion battery(AIB)is very promising for its safety and large current charge–discharge.However,it is challenging to build a high-performance AIB system based on low-cost materials especially cathode&electro...Aluminum-ion battery(AIB)is very promising for its safety and large current charge–discharge.However,it is challenging to build a high-performance AIB system based on low-cost materials especially cathode&electrolyte.Despite the low-cost expanded graphite-triethylaminehydrochloride(EG-ET)system has been improved in cycle performance,its rate capability still remains a gap with the expensive graphene-alkylimidazoliumchloride AIB system.In this work,we treated the cheap EG appropriately through an industrial high-temperature process,employed the obtained EG3K(treated at 3000℃)cathode with AlCl_(3)-ET electrolyte,and built a novel,high-rate capability and double-cheap AIB system.The new EG3K-ET system achieved the cathode capacity of average 110 m Ah g^(-1)at 1 A g^(-1)with 18,000cycles,and retained the cathode capacity of 100 m Ah g^(-1)at 5 A g^(-1)with 27,500 cycles(fast charging of 72 s).Impressively,we demonstrated that a battery pack(EG3K-ET system,12 m Ah)had successfully driven the Model car running 100 m long.In addition,it was confirmed that the improvement of rate capability in the EG3K-ET system was mainly derived by deposition,and its capacity contribution ratio was about 53.7%.This work further promoted the application potential of the low-cost EG-ET AIB system.展开更多
Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and ...Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.展开更多
In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high temp...In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high tempera- ture. The samples were analysed by using scanning electron microscope (SEM), X-ray diffraction(XRD), energy disperse spectroscopy (EDS), and differential scanning calorimetry (DSC). The optimal conditions for preparation are as follows: the molar ratio of tetrabutyl orthotitanate to triethanolamine is 1 : 0.4, and the calcination and expansion temperature is in the range of 650--750 ~C. Under such conditions, the expansion volume of composites could reach 98 mE/g, and the mass loss ratio is less than 5%. The analysis shows that lower temperature and smaller particle size of graphite are helpful to the formation of anatase-type of TiO2, but larger particle size will lead to lower mass loss ratio, and higher temperature and larger particle size will lead to higher expansion volume.展开更多
Currently,Na-ion battery(NIB) has become one of the most potential alternatives for Li-ion batteries due to the safety and low cost.As a promising anode for Na-ion storage,expanded graphite has attracted considerable ...Currently,Na-ion battery(NIB) has become one of the most potential alternatives for Li-ion batteries due to the safety and low cost.As a promising anode for Na-ion storage,expanded graphite has attracted considerable attention.However,the sodiation-desodiation process is still unclear.In our work,we obtain expanded graphite through slight modified Hummer's method and subsequent thermal treatment,which exhibits excellent cycling stability.Even at a high current density of 1 A g^(-1),our expanded graphite still remains a high reversible capacity of 100 mA h g^(-1) after 2600 cycles.Furthermore,we also investigate the electrochemical mechanism of our expanded graphite for Na-ion storage by operando Raman technique,which illuminate the electrochemical reaction during different sodiation-desodiation processes.展开更多
A new material is prepared by impregnating the expanded graphite(EG) into ethanol solutions of metal acetate and then drying and reducing it in H2.It contains the EG and the nanoparticles of the magnetic Ni–Fe alloy ...A new material is prepared by impregnating the expanded graphite(EG) into ethanol solutions of metal acetate and then drying and reducing it in H2.It contains the EG and the nanoparticles of the magnetic Ni–Fe alloy for the electromagnetic shielding.Its morphology,phase structure,magnetic properties,and electromagnetic shielding effectiveness(SE) are investigated in our experiment.It shows that the morphology,the phase structure,and the magnetic property of the composite can be modified by altering the Ni content in the alloy nanoparticles.Interestingly,the SE can be enhanced to 54–70 d B at low frequencies(300 kHz–10 MHz) by dispersing the magnetic nanoparticles onto EG.展开更多
Expanded graphite (r-;G) shows higher adsorption capacity for oils than for dyes. To illustrate the different adsorption mechanism of EG for these pollutants, adsorption capacities of dyes and oil on EG were firs...Expanded graphite (r-;G) shows higher adsorption capacity for oils than for dyes. To illustrate the different adsorption mechanism of EG for these pollutants, adsorption capacities of dyes and oil on EG were firstly studied. And then stepwise adsorption for oils was carried out with EG which has been saturated firstly by dyes, the difference between adsorbance of oil on EG was checked with deviation analysis. Scanning electronic microscopy (SEM) analysis was used to show structure difference of EG adsorbed different adsorbates. These used adsorbates were SD300 oil, basic fuchsine, Auramine lake yellow O and acid brilliant red 3B. The adsorption isotherm of dyes on EG is type 11 or type 1, and their equilibrium adsorbances are less than 1.0 g/g. While, adsorbance for SD300 oil can reach 104.5 g/g. Deviation analysis for stepwise adsorbances of oil shows no statistical significance. EG saturated firstly by dyes, still has an average adsorption capacity of 35 g/g for SD300 oil, and it does not change with the initial dyes concentration. SEM photos illustrate the adsorption of oil on EG is mainly filling, In the adsorption of dyes, there is severe breakage of the V-type pore and shrinkage of the particle. Kinetic difference is analyzed also.展开更多
Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produ...Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produce novel graphite with low energy consumption and high performance is economically important.Herein,a nanostructured graphite composed of multi-walled carbon nanotubes(MWCNTs)and graphite shells was prepared by one-pot method through low-temperature pyrolysis of iron-based metal-organic framework(MOF)and carbon source.The high graphitization degree of nanostructured graphite makes the initial Coulombic efficiency(ICE)exceed 80%,and the three-dimensional(3D)conductive network ensures a specific capacity of 234 mAh·g^(−1)after 1000 cycles at a high current density of 500 mA·g^(−1).In addition,the typical graphite potassium storage mechanism is also demonstrated by in situ X-ray diffraction(XRD)and in situ Raman spectroscopy,and its practicality is also proved by the voltage of the full cells.This work provides a feasible way to optimize the practical production process of AG and expand its application in energy storage.展开更多
By using hydrothermal synthesis method, successively adding tetrabutyl titanate and expandable flake graphite in 40 mL 0.95% NH4Cl solution prepared the nano TiO2/expandable flake graphite, which was then settled in m...By using hydrothermal synthesis method, successively adding tetrabutyl titanate and expandable flake graphite in 40 mL 0.95% NH4Cl solution prepared the nano TiO2/expandable flake graphite, which was then settled in muffle furnace in the expansion of 10 s under 800 ℃ and got nanosized TiO2/expanded graphite. Synthesized that with CoFe2O4 by chemical coprecipitation method finally prepared magnetic nanosized photocatalyst TiO2/expanded graphite. Magnetic nanosized TiO2/expanded graphite was studied on the photodegradation performance of methyl orange solution and the magnetic recovery after the degradation of methyl orange solution. The experiment result showed that in 50 mL 25 mg/L methyl orange solution joined 120 mg loading 50% TiO2 of the expanded graphite, exposed to ultraviolet irradiation for 1 h, the methyl orange decolorization ratio was 90%. When the load of CoFe2O4 in nanosized TiO2/expanded graphite reached 40%, its magnetic recovery efficiency reached 94.3%.展开更多
The expanded graphite (EG) with a low density and better extinction performance can be used in military as passive jamming material in IR and MMW bands. Its complex refractive index is a significant parameter for the ...The expanded graphite (EG) with a low density and better extinction performance can be used in military as passive jamming material in IR and MMW bands. Its complex refractive index is a significant parameter for the extinction property. This paper presents a method to calculate the complex refractive index of EG. The reflection spectra of EG pellets were measured in the 0.24-2.6μm and 2.5-25μm bands, respectively. Based on the measurement results, the complex refractive index of EG in 5-10μm band was calculated by using Kramers-Kronig(K-K) relation and Bruggeman effective medium theory, and then the errors were analyzed. The results indicate that it is feasible to calculate the complex refractive index of EG based on its IR reflection spectra data.展开更多
文摘Low thermal conductivity of binary fatty acid mixture of palmitic and lauric acids(PA-LA)within the value range of 0.15-0.17 W/(m·K)restricts its wide utilization as thermal energy storage material in the active regime of solar heating applications at low operating temperatures.Nevertheless,this mixture as phase change material(PCM)has a suitable phase-change temperature and heat of 36℃and 176.3 J/g,respectively.Hence,the objective of this study is to formulate a novel form-stable composite PCM with the PA-LA mixture and expanded graphite(EG)as a thermal enhancer.PA-LA eutectic mixture with varied concentrations of EG was prepared and characterized.The thermal conductivity of PA-LA/EG increased gradually with the mass of EG.Optimum thermal properties were observed in PA-LA/(5%EG)composite,where its melting(T_(m)),freezing temperature(T_(t)),latent melting heat and thermal conductivity was 35.53℃,34.84℃,174 J/g,and 1.19 W/(m·K),respectively.Also,the composite PCM is characterized by good chemical-thermal stability and thermal reliability for long-term usage.In conclusion,it can be utilized as a prospective form-stable PCM for thermal energy storage in solar heating systems,overheat treatment systems,and other thermal storage applications at low operating temperatures.
基金supported by an Early Career Faculty Grant from NASA’s Space Technology Research Grants Program (80NSSC18K1509)supported by the Institute for Electronics and Nanotechnology Seed Grant and performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which was supported by the National Science Foundation (ECCS-2025462)
文摘As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation.
基金supported by the State Key Program of Coal Joint Funds of National Natural Science Foundation of China (No.51134020)the Natural Science Foundation of Shandong Province(No. ZR2011EL036)the High School Science & Technology Fund Planning Project of Shandong Province (No. JIILD53)
文摘In this study, a series of flame-retardant polyisocyanurate-polyurethane (PIR-PUR) foams were prepared using various concentrations (0-25% by weight) of expandable graphite (EG) and dimethyl methyl phosphonate (DMMP) (0-7% by weight). The effect of these additives on the properties of the PIR-PUR foams, including physico-mechanical, morphological, flame retardancy, and thermal stability, was studied. Increasing amounts of EG in the PIR-PUR foam caused a significant drop in the compression strength. However, DMMP caused the mechanical properties of PIR-PUR foam to improve compared to foam filled with EG alone. The flame retardancy of PIR-PUR foams containing both EG and DMMP was enhanced significantly compared to EG filled foams. Thermogravimetric analysis (TGA) indicated that EG enhances the thermal stability of PIR-PUR foams but that DMMP decreased it. The morphology of the residual char provided conclusive evidence for the weak thermal stability of foams filled with DMMP.
基金supported by the National Natural Science Foundation of China(No.51304027)China Postdoctoral Science Foundation(2014M560567 and 2015T80730)+4 种基金Shandong Province Science and Technology Development Plan(2014GSF120012)the State Key Program of Coal Joint Funds of National Natural Science Foundation of China(Nos.51134020 and U1261205)Shandong Province Natural Science Foundation(No.ZR2011EL036)the Doctoral Scientific Research Foundation of Binzhou University(No.2013Y06)the Key Technology Projects for Preventing Major Accident of National Security State Administration of Work Safety
文摘In this study,orthogonal experiments were conducted to investigate the influence of expandable graphite(EG),dimethyl methylphosphonate(DMMP),triethanolamine(TEA),and isocyanate content on the compressive and bonding strengths,oxygen index,and fluidity of rigid polyurethane foam(RPUF).The results revealed that EG significantly increased the oxygen index of RPUF,enlarged the diameter of foam cells,and decreased the cell-closed content in foam;thus,leading to a pressure drop in RPUF.However,excessive EG was capable of reducing the fluidity of polyurethane slurry.TEA exhibited significant influence on the compressive strength of RPUF,which dropped initially,and then increased.DMMP had a remarkable effect on the flame retardant property and compressive strength of RPUF.Compressive strength of RPUF initially displayed an increase followed by a decrease with increasing dosage of DMMP,and achieved the maximum value at DMMP dosage of 4%.DMMP could effectively reduce the diameter of RPUF cells leading to an increase in the percentage of close area in foam.DMMP displayed the flame-retardation effects mainly in the gas phase leading to a significant enhancement in the oxygen index of RPUF.Moreover,the compressive strength and bonding strength of RPUF decrease significantly with the increase of isocyanate content due to the increased blowing efficiency by the CO_2.The oxygen index and flowing length of foam increased with the increase in isocyanate dosage.
文摘This work reports on the effect of commercial expandable graphite(EG)on the flammability and thermal decomposition properties of PLA-starch blend.The PLA-starch/EG composites were prepared by melt-mixing and their thermal stability,volatile pyrolysis products and flammability characteristics were investigated.The char residues of the composites,after combustion in a cone calorimeter,were analyzed with environmental scanning electron microscopy(ESEM).The thermal decomposition stability of the composites improved in the presence of EG.However,the char content was less than expected as per the combination of the wt%EG added into PLA-starch and the%residue of PLA-starch.The flammability performance of the PLA-starch/EG composites improved,especially at 15 wt%EG content,due to a thick and strong worm-like char structure.The peak heat release rate(PHRR)improved by 74%,the total smoke production(TSP)by 40%and the specific extinction area(SEA)by 55%.The improvements are attributed to the ability of EG to exfoliate at increased temperatures during which time three effects occurred:(i)cooling due to an endothermic exfoliation process,(ii)dilution due to release of H2O,SO2 and CO2 gases,and (iii)formation of a protective intumescent char layer.However,the CO and CO2 yields were found to be unfavorably high due to the presence of EG.
文摘The paper deals with a new method to synthesize expand-able graphite with H2O2 as oxidizer. This method causes less environ ——mental pollution than the tradi——tional method using HNO3. Some, opti-mum technical conditions have been given here. It is shorvn that traditional method for manufacturing expandable graphite with HNO3 as oxidizer can be replaced completely with H2O2 as an oxidizer. Expandable graphite made, in this way has the same characteristics as that made in traditional way, but the pollution of NO2 to air decreases greatly.
基金support from the National Basic Research Program of China (2014CB239702)National Natural Science Foundation of China (Grant Nos. 21371121, 21506126 and 51502174)+1 种基金Shenzhen Science and Technology Research Foundation (Grant Nos. JCYJ20150324141711645,JCYJ20150324141711616 and JCYJ20150626090504916)China Postdoctoral Science Foundation (2015 M582401 and 2015 M572349)
文摘A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 m Ah g^(-1)at a current of 1 A g^(-1)after 800 cycles. This good performance may beattributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure,efficiently accommodate volume changes in the Ni Fe_2O_4-based anodes, and alleviate aggregation of Ni Fe_2O_4 nanoparticles.
基金Funded by the Science Foundation of Jiangsu Province (No. BK2009534)Foundation of Oil Gas Storage and Transport of Jiangsu Province (No.CY0901)
文摘A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitrogen adsorption.The experimental results indicated that the EGCs was not simply mechanical mixture of EG and activated carbon,instead the activated carbon was coated on the surface of interior and external pores of the EG in the form of thin carbon layer.The thickness of the activated carbon layer was nearly one hundred nanometers by calculation.It was shown that the higher the impregnation ratio and the activation temperature were,the easier the porosity development would be.And the BET surface area and the total pore volume were as high as 1978 m2/g and 0.9917 cm3/g respectively at 350℃ with an impregnation ratio of 0.9.
基金supported by the National Natural Science Foundation of China(No.52075407)Natural Science Foundation of Shaanxi Province of China(No.2019JM-034).
文摘The friction coefficient and wear rate of pretreated graphite with liquid nitrogen were obtained by using a ball-on-disk tester,and the wear of GCr15–graphite seal pairs with the low-temperature time-dependent pretreatment was discussed by comparing the wear morphology.The results show that liquid nitrogen pretreatment can affect the hardness and interlayer spacing of graphite.The range of the friction coefficients of pretreated graphite changes from 0.17 to 0.22.With the increase of liquid nitrogen pretreatment time,the wear mechanism of graphite would change from dominated three-body wear to adhesion wear.The experimental results of the mechanical seal with liquid nitrogen pretreatment show that the wear rate of stator is less than 0.00165 mm^(3)·N^(−1)·m^(−1),and the graphite shows a good low-temperature compatibility.
基金This paper was the part of doctor thesis of China Uni-versity of Geoscience, (Beijing). The project was sup-' ported by Natio
文摘The intercalation compounds of CuCl2 were synthesized with expanded graphite, whose magnitude of the electrical conductivity is about 10(3)S(.)cm(-1). Their electrical conductivity is 3 similar to6 times as high as that of the expanded graphite, and about 10 times as high as that of GIC made of the non-expanded graphite. The microanalysis results of chemical compounds by X-ray energy spectrum scanning of TEM testified that the atomic ratio of chloride and cupric is nonstoichoimetric. The multivalence and exchange of electrovalence of the cupric ion was confirmed by the XPS-ESCA. Vacancy of chlorine anion increases the concentration of charge carrier. The special stage structure, made of graphite and chloride, produces a weak chemical bond belt and provides a carrier space in the direction of GIC layer. These factors develop the electrical properties.
基金the support of the National Natural Science Foundation of China(51533008,51703194 and 21805242)the National Key R&D Program of China(2016YFA0200200)the Excellent Postdoctoral Special Fund of Zhejiang University for funding this research work。
文摘Aluminum-ion battery(AIB)is very promising for its safety and large current charge–discharge.However,it is challenging to build a high-performance AIB system based on low-cost materials especially cathode&electrolyte.Despite the low-cost expanded graphite-triethylaminehydrochloride(EG-ET)system has been improved in cycle performance,its rate capability still remains a gap with the expensive graphene-alkylimidazoliumchloride AIB system.In this work,we treated the cheap EG appropriately through an industrial high-temperature process,employed the obtained EG3K(treated at 3000℃)cathode with AlCl_(3)-ET electrolyte,and built a novel,high-rate capability and double-cheap AIB system.The new EG3K-ET system achieved the cathode capacity of average 110 m Ah g^(-1)at 1 A g^(-1)with 18,000cycles,and retained the cathode capacity of 100 m Ah g^(-1)at 5 A g^(-1)with 27,500 cycles(fast charging of 72 s).Impressively,we demonstrated that a battery pack(EG3K-ET system,12 m Ah)had successfully driven the Model car running 100 m long.In addition,it was confirmed that the improvement of rate capability in the EG3K-ET system was mainly derived by deposition,and its capacity contribution ratio was about 53.7%.This work further promoted the application potential of the low-cost EG-ET AIB system.
基金Funded by the National Natural Science Foundation of China(No.51078372)the Doctoral Program of Higher Specialized Research Foundation(No.20105522110002)
文摘Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.
基金Supported by Applied Basic Research Project of Sichuan Province (No.2006J13-014)Innovation Fund of Panzhihua University
文摘In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high tempera- ture. The samples were analysed by using scanning electron microscope (SEM), X-ray diffraction(XRD), energy disperse spectroscopy (EDS), and differential scanning calorimetry (DSC). The optimal conditions for preparation are as follows: the molar ratio of tetrabutyl orthotitanate to triethanolamine is 1 : 0.4, and the calcination and expansion temperature is in the range of 650--750 ~C. Under such conditions, the expansion volume of composites could reach 98 mE/g, and the mass loss ratio is less than 5%. The analysis shows that lower temperature and smaller particle size of graphite are helpful to the formation of anatase-type of TiO2, but larger particle size will lead to lower mass loss ratio, and higher temperature and larger particle size will lead to higher expansion volume.
基金financial supports from the National Natural Science Foundation of China (51702056, 51772135)the Ministry of Education of China (6141A02022516)+2 种基金the Fundamental Research Funds for the Central Universities (21617330)the China Postdoctoral Science Foundation (2017M622902, 2019T120790)GDHVPS (2017)。
文摘Currently,Na-ion battery(NIB) has become one of the most potential alternatives for Li-ion batteries due to the safety and low cost.As a promising anode for Na-ion storage,expanded graphite has attracted considerable attention.However,the sodiation-desodiation process is still unclear.In our work,we obtain expanded graphite through slight modified Hummer's method and subsequent thermal treatment,which exhibits excellent cycling stability.Even at a high current density of 1 A g^(-1),our expanded graphite still remains a high reversible capacity of 100 mA h g^(-1) after 2600 cycles.Furthermore,we also investigate the electrochemical mechanism of our expanded graphite for Na-ion storage by operando Raman technique,which illuminate the electrochemical reaction during different sodiation-desodiation processes.
基金supported by the National Natural Science Foundation of China(Nos.50977042 and 10904061)the“863”program of MSTC(No.2006AA03Z458)the research funds for Nanjing Institute of Technology(No.YKJ201002)
文摘A new material is prepared by impregnating the expanded graphite(EG) into ethanol solutions of metal acetate and then drying and reducing it in H2.It contains the EG and the nanoparticles of the magnetic Ni–Fe alloy for the electromagnetic shielding.Its morphology,phase structure,magnetic properties,and electromagnetic shielding effectiveness(SE) are investigated in our experiment.It shows that the morphology,the phase structure,and the magnetic property of the composite can be modified by altering the Ni content in the alloy nanoparticles.Interestingly,the SE can be enhanced to 54–70 d B at low frequencies(300 kHz–10 MHz) by dispersing the magnetic nanoparticles onto EG.
文摘Expanded graphite (r-;G) shows higher adsorption capacity for oils than for dyes. To illustrate the different adsorption mechanism of EG for these pollutants, adsorption capacities of dyes and oil on EG were firstly studied. And then stepwise adsorption for oils was carried out with EG which has been saturated firstly by dyes, the difference between adsorbance of oil on EG was checked with deviation analysis. Scanning electronic microscopy (SEM) analysis was used to show structure difference of EG adsorbed different adsorbates. These used adsorbates were SD300 oil, basic fuchsine, Auramine lake yellow O and acid brilliant red 3B. The adsorption isotherm of dyes on EG is type 11 or type 1, and their equilibrium adsorbances are less than 1.0 g/g. While, adsorbance for SD300 oil can reach 104.5 g/g. Deviation analysis for stepwise adsorbances of oil shows no statistical significance. EG saturated firstly by dyes, still has an average adsorption capacity of 35 g/g for SD300 oil, and it does not change with the initial dyes concentration. SEM photos illustrate the adsorption of oil on EG is mainly filling, In the adsorption of dyes, there is severe breakage of the V-type pore and shrinkage of the particle. Kinetic difference is analyzed also.
基金the financial support from the National Key Research and Development Program of China(Nos.2022YFB2404300 and 2023YFB3809303)the National Natural Science Foundation of China(Nos.51832004 and 52127816)State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(No.WUT:2022-KF-4).
文摘Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produce novel graphite with low energy consumption and high performance is economically important.Herein,a nanostructured graphite composed of multi-walled carbon nanotubes(MWCNTs)and graphite shells was prepared by one-pot method through low-temperature pyrolysis of iron-based metal-organic framework(MOF)and carbon source.The high graphitization degree of nanostructured graphite makes the initial Coulombic efficiency(ICE)exceed 80%,and the three-dimensional(3D)conductive network ensures a specific capacity of 234 mAh·g^(−1)after 1000 cycles at a high current density of 500 mA·g^(−1).In addition,the typical graphite potassium storage mechanism is also demonstrated by in situ X-ray diffraction(XRD)and in situ Raman spectroscopy,and its practicality is also proved by the voltage of the full cells.This work provides a feasible way to optimize the practical production process of AG and expand its application in energy storage.
文摘By using hydrothermal synthesis method, successively adding tetrabutyl titanate and expandable flake graphite in 40 mL 0.95% NH4Cl solution prepared the nano TiO2/expandable flake graphite, which was then settled in muffle furnace in the expansion of 10 s under 800 ℃ and got nanosized TiO2/expanded graphite. Synthesized that with CoFe2O4 by chemical coprecipitation method finally prepared magnetic nanosized photocatalyst TiO2/expanded graphite. Magnetic nanosized TiO2/expanded graphite was studied on the photodegradation performance of methyl orange solution and the magnetic recovery after the degradation of methyl orange solution. The experiment result showed that in 50 mL 25 mg/L methyl orange solution joined 120 mg loading 50% TiO2 of the expanded graphite, exposed to ultraviolet irradiation for 1 h, the methyl orange decolorization ratio was 90%. When the load of CoFe2O4 in nanosized TiO2/expanded graphite reached 40%, its magnetic recovery efficiency reached 94.3%.
文摘The expanded graphite (EG) with a low density and better extinction performance can be used in military as passive jamming material in IR and MMW bands. Its complex refractive index is a significant parameter for the extinction property. This paper presents a method to calculate the complex refractive index of EG. The reflection spectra of EG pellets were measured in the 0.24-2.6μm and 2.5-25μm bands, respectively. Based on the measurement results, the complex refractive index of EG in 5-10μm band was calculated by using Kramers-Kronig(K-K) relation and Bruggeman effective medium theory, and then the errors were analyzed. The results indicate that it is feasible to calculate the complex refractive index of EG based on its IR reflection spectra data.