M, a particular industrial waste, was selected to detoxify chromium slag at a high temperature. The carbon remaining in M reduced Cr ( Ⅳ ) of Na2 CrO4 borne in the chromium slag to Cr ( Ⅲ ) in the solid phase re...M, a particular industrial waste, was selected to detoxify chromium slag at a high temperature. The carbon remaining in M reduced Cr ( Ⅳ ) of Na2 CrO4 borne in the chromium slag to Cr ( Ⅲ ) in the solid phase reaction, and its thermodynamics and kinetics were studied. The reduction process of Na2CrO4 by carbon produced CO, whiCh'was endothermic. Under the experimental condition, the apparent activation energy was 4. 41 kJ·mol^-1 , the'apparent order of reaction for Na2 CrO4 was equal to one, and the partial pressure of CO was only 0.22 Pa at 1 330℃.展开更多
Manganese silicide MnSi_(2-x) thin films have been prepared on n-type siliconsubstrates through solid phase reaction. The heterostructures were analyzed by X-ray diffraction,Rutherford backscattering spectroscopy, Fou...Manganese silicide MnSi_(2-x) thin films have been prepared on n-type siliconsubstrates through solid phase reaction. The heterostructures were analyzed by X-ray diffraction,Rutherford backscattering spectroscopy, Fourier transform infrared transmittance spectroscopy andthe four-point probe technique. The results show that two manganese silicides have been formedsequentially via the reaction of thin layer Mn with Si substrate at different irradiation annealingstages, i.e., MnSi at 450 deg C and MnSi_(1.73) at 550 deg C. MnSi_(1.73) phase exhibits preferredgrowth after irradiation with infrared. In situ four-point probe measurements of sheet resistanceduring infrared irradiation annealing show that nucleation of MnSi and phase transformation of MnSito MaSi_(1.73) occur at 410 deg C and 530 deg C, respectively; the MnSi phase shows metallicbehavior, while MnSi_(1.73) exhibits semiconducting behavior. Characteristic phonon bands ofMnSi_(2-x) silicides, which can be used for phase identification along with conventional XRDtechniques, have been observed by FTIR spectroscopy.展开更多
A series of low-temperature phase transitions of sodium aluminate solutions were studied by differential scanning calorimetry (DSC) and Raman spectroscopy. The results indicate that NaOH concentration is a primary imp...A series of low-temperature phase transitions of sodium aluminate solutions were studied by differential scanning calorimetry (DSC) and Raman spectroscopy. The results indicate that NaOH concentration is a primary impact factor for the binary eutectic point and ice melting temperature of sodium aluminate solutions with low NaOH concentration. In addition, the phase transition process of sodium aluminate solutions with low NaOH concentration from 123.15 to 283.15 K is divided into four steps: non-crystal to crystal, ternary eutectic reaction, binary eutectic reaction and ice melt. The projection phase diagram of NaOH-Al(OH)3-H2O system at low temperature was plotted, in which the ternary eutectic temperature for sodium aluminate solutions is 183.15 K.展开更多
The effect of F,K,and Na on the solid phase reaction of the Baiyunebo iron ore was investigated by differential thermal analysis (DTA) and X-ray diffraction(XRD).It has been identified that alkaline elements K and...The effect of F,K,and Na on the solid phase reaction of the Baiyunebo iron ore was investigated by differential thermal analysis (DTA) and X-ray diffraction(XRD).It has been identified that alkaline elements K and Na in the Baiyunebo ore instigate the formation of low melting point compounds Na2SiO3 and Na2O·Fe2O3 and the generation of molten state in the solid phase sintering.Element F in the Baiyunebo ore facilitates the formation of cuspidine compound 3CaO·2SiO2·CaF2 in the solid phase reaction.The cuspidine compound is kept in solid as one of the final products through the entire sintering process due to its high melting point.In the sintering process,CaF2and SiO2 react with CaO first and form 3CaO·2SiO2·CaF2 and 3CaO·2SiO2,so the formation of ferrites,Na2O·Fe2O3,and 2CaO·Fe2O3 is inhibited.展开更多
A single crystalline Mg2Si film was formed by solid phase reaction (SPR) of a Si(111) substrate with an Mg overlayer capped with an oxide layer(s),which was enhanced by post annealing from room temperature to 10...A single crystalline Mg2Si film was formed by solid phase reaction (SPR) of a Si(111) substrate with an Mg overlayer capped with an oxide layer(s),which was enhanced by post annealing from room temperature to 100℃ in a molecular beam epitaxy (MBE) system.The thermal stability of the Mg2Si film was then systematically investigated by post annealing in an oxygen-radical ambient at 300℃,450℃ and 650℃,respectively.The Mg2Si film stayed stable until the annealing temperature reached 450℃ then it transformed into amorphous MgOx attributed to the decomposition of Mg2Si and the oxidization of dissociated Mg.展开更多
Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,slu...Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,sluggish reaction dynamics,high energy consumption,and long reaction time.To overcome these chal-lenges,we first employed a high-temperature shock(HTS)strategy for fast synthesis of the NCM,and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time.In the HTS process,ultrafast average reaction rate of phase transition from Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_(2) to Li-containing oxides is 66.7(%s^(-1)),that is,taking only 1.5 s.An ultrahigh heating rate leads to fast reaction kinetics,which induces the rapid phase transition of NCM cathodes.The HTS-synthesized nickel-rich layered oxides perform good cycling performances(94%for NCM523,94%for NCM622,and 80%for NCM811 after 200 cycles at 4.3 V).These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.展开更多
Peptide nucleic acids (PNA) oligomers were synthesized in most cases by peptide synthesis from N-protected monomers. In this work a new method of obtaining PNA monomer by Ugi four-component condensation reaction was t...Peptide nucleic acids (PNA) oligomers were synthesized in most cases by peptide synthesis from N-protected monomers. In this work a new method of obtaining PNA monomer by Ugi four-component condensation reaction was tested by solid-phase synthesis. The Fmoc protected PNA monomer was build up with thymin-1-yl acetic acid, 3-methylbutyl aldehyde, Fmoc protected aminoethyl isocyanide and Gly-Wang resin.展开更多
The solid-phase reaction of sapphire (Al2O3) substrates and spin-coated copper nitrate films was studied. X-ray diffraction analysis revealed that a CuO fraction was observed by annealing at temperatures higher than ...The solid-phase reaction of sapphire (Al2O3) substrates and spin-coated copper nitrate films was studied. X-ray diffraction analysis revealed that a CuO fraction was observed by annealing at temperatures higher than 800℃. In addition, crystalline CuAlO2 was formed at annealing temperatures in the range of 900℃ – 1000℃ by solid-phase reaction of the spin-coated films and sapphire substrate. Crystalline CuAlO2 was formed by annealing at 1000℃ for 5 - 10 h, and CuAl2O4 was formed by annealing at 1000℃ for 15 h. When annealing under N2 flow, Cu2O was observed rather than CuAlO2. For a sample annealed in air at 1000℃ for 5 h, X-ray photoelectron spectroscopy measurements at various depths from surface revealed that Cu2+ ions are located around the surface, which suggests that the CuO fraction is present near the surface while the CuAlO2 fraction is located at greater depths from the surface of the samples. The depth profile of the sample suggests that there is no pure CuAlO2 layer in the sample, but that crystalline CuAlO2 is present in the sample as a mixture with CuO and Al2O3.展开更多
We report here a solid-phase synthesis of 1, 4-disubstituted 1, 2, 3-triazole using polystyrene-supported selenium resin. The resin used here not only works as a simple linker, but also assists the crucial α-alkylati...We report here a solid-phase synthesis of 1, 4-disubstituted 1, 2, 3-triazole using polystyrene-supported selenium resin. The resin used here not only works as a simple linker, but also assists the crucial α-alkylation reaction and selenoxide syn-elimimation, which ensures the purity of the products.展开更多
The nanosized zirconia was synthesized via solid state reaction in the presence of surfactant. The results indicate that crystal phase of zirconia can be controlled by tuning the synthesis parameters such as OH^-/Zr m...The nanosized zirconia was synthesized via solid state reaction in the presence of surfactant. The results indicate that crystal phase of zirconia can be controlled by tuning the synthesis parameters such as OH^-/Zr molar ratio, crystallizing temperature and time. It can be transformed among amorphous, tetragonal and monoclinic phases. The transformation is driven by particle size. The research shows the nanocrystalline zirconia possesses the higher thermal stability compared with amorphous framework. The "glow exotherm" can be observed for the amorphous samples. Otherwise, it is in the absence for nanocrystalline samples. Herein, the reason for retention of tetragonal zirconia is demonstrated.展开更多
The solid state reduction reaction of Al-10 % CuO mixed powders during mechanical alloying was investigated using XRD, DTA and TEM. The CuO is believed to be gradually reduced by Al, and controlled by diffusion of ato...The solid state reduction reaction of Al-10 % CuO mixed powders during mechanical alloying was investigated using XRD, DTA and TEM. The CuO is believed to be gradually reduced by Al, and controlled by diffusion of atoms and ions. Reduced Cu spontaneously reacts with Al to form a metastable equilibrium of Al (Cu) with Al4Cu9 phase during ball-milling, instead of CuAl2 and Al(Cu), which is only observed after annealing.展开更多
基金Item Sponsored by National Natural Science Foundation of China (50234040)
文摘M, a particular industrial waste, was selected to detoxify chromium slag at a high temperature. The carbon remaining in M reduced Cr ( Ⅳ ) of Na2 CrO4 borne in the chromium slag to Cr ( Ⅲ ) in the solid phase reaction, and its thermodynamics and kinetics were studied. The reduction process of Na2CrO4 by carbon produced CO, whiCh'was endothermic. Under the experimental condition, the apparent activation energy was 4. 41 kJ·mol^-1 , the'apparent order of reaction for Na2 CrO4 was equal to one, and the partial pressure of CO was only 0.22 Pa at 1 330℃.
基金This work has been supported jointly by the National Natural Science Foundation ofChina (Crant No. 69806005)the Natural Scie
文摘Manganese silicide MnSi_(2-x) thin films have been prepared on n-type siliconsubstrates through solid phase reaction. The heterostructures were analyzed by X-ray diffraction,Rutherford backscattering spectroscopy, Fourier transform infrared transmittance spectroscopy andthe four-point probe technique. The results show that two manganese silicides have been formedsequentially via the reaction of thin layer Mn with Si substrate at different irradiation annealingstages, i.e., MnSi at 450 deg C and MnSi_(1.73) at 550 deg C. MnSi_(1.73) phase exhibits preferredgrowth after irradiation with infrared. In situ four-point probe measurements of sheet resistanceduring infrared irradiation annealing show that nucleation of MnSi and phase transformation of MnSito MaSi_(1.73) occur at 410 deg C and 530 deg C, respectively; the MnSi phase shows metallicbehavior, while MnSi_(1.73) exhibits semiconducting behavior. Characteristic phonon bands ofMnSi_(2-x) silicides, which can be used for phase identification along with conventional XRDtechniques, have been observed by FTIR spectroscopy.
基金Project(51374251)supported by the National Natural Science Foundation of China
文摘A series of low-temperature phase transitions of sodium aluminate solutions were studied by differential scanning calorimetry (DSC) and Raman spectroscopy. The results indicate that NaOH concentration is a primary impact factor for the binary eutectic point and ice melting temperature of sodium aluminate solutions with low NaOH concentration. In addition, the phase transition process of sodium aluminate solutions with low NaOH concentration from 123.15 to 283.15 K is divided into four steps: non-crystal to crystal, ternary eutectic reaction, binary eutectic reaction and ice melt. The projection phase diagram of NaOH-Al(OH)3-H2O system at low temperature was plotted, in which the ternary eutectic temperature for sodium aluminate solutions is 183.15 K.
基金supported by the National Natural Science Foundation of China(No.50664006)
文摘The effect of F,K,and Na on the solid phase reaction of the Baiyunebo iron ore was investigated by differential thermal analysis (DTA) and X-ray diffraction(XRD).It has been identified that alkaline elements K and Na in the Baiyunebo ore instigate the formation of low melting point compounds Na2SiO3 and Na2O·Fe2O3 and the generation of molten state in the solid phase sintering.Element F in the Baiyunebo ore facilitates the formation of cuspidine compound 3CaO·2SiO2·CaF2 in the solid phase reaction.The cuspidine compound is kept in solid as one of the final products through the entire sintering process due to its high melting point.In the sintering process,CaF2and SiO2 react with CaO first and form 3CaO·2SiO2·CaF2 and 3CaO·2SiO2,so the formation of ferrites,Na2O·Fe2O3,and 2CaO·Fe2O3 is inhibited.
基金Project supported by the National Natural Science Foundation (Grant Nos 50532090,60606023 and 60621091)the Ministry of Science and Technology of China (Grant Nos 2002CB613502 and 2007CB936203)Australia Research Council
文摘A single crystalline Mg2Si film was formed by solid phase reaction (SPR) of a Si(111) substrate with an Mg overlayer capped with an oxide layer(s),which was enhanced by post annealing from room temperature to 100℃ in a molecular beam epitaxy (MBE) system.The thermal stability of the Mg2Si film was then systematically investigated by post annealing in an oxygen-radical ambient at 300℃,450℃ and 650℃,respectively.The Mg2Si film stayed stable until the annealing temperature reached 450℃ then it transformed into amorphous MgOx attributed to the decomposition of Mg2Si and the oxidization of dissociated Mg.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.92372107 and 52171219).
文摘Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,sluggish reaction dynamics,high energy consumption,and long reaction time.To overcome these chal-lenges,we first employed a high-temperature shock(HTS)strategy for fast synthesis of the NCM,and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time.In the HTS process,ultrafast average reaction rate of phase transition from Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_(2) to Li-containing oxides is 66.7(%s^(-1)),that is,taking only 1.5 s.An ultrahigh heating rate leads to fast reaction kinetics,which induces the rapid phase transition of NCM cathodes.The HTS-synthesized nickel-rich layered oxides perform good cycling performances(94%for NCM523,94%for NCM622,and 80%for NCM811 after 200 cycles at 4.3 V).These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.
基金This work was supposed by the National Basic Research Program(973 Program)from the Ministry of Science and Technology of China(G1998051114)the National Natural Science Foundation of China(20272004)
文摘Peptide nucleic acids (PNA) oligomers were synthesized in most cases by peptide synthesis from N-protected monomers. In this work a new method of obtaining PNA monomer by Ugi four-component condensation reaction was tested by solid-phase synthesis. The Fmoc protected PNA monomer was build up with thymin-1-yl acetic acid, 3-methylbutyl aldehyde, Fmoc protected aminoethyl isocyanide and Gly-Wang resin.
文摘The solid-phase reaction of sapphire (Al2O3) substrates and spin-coated copper nitrate films was studied. X-ray diffraction analysis revealed that a CuO fraction was observed by annealing at temperatures higher than 800℃. In addition, crystalline CuAlO2 was formed at annealing temperatures in the range of 900℃ – 1000℃ by solid-phase reaction of the spin-coated films and sapphire substrate. Crystalline CuAlO2 was formed by annealing at 1000℃ for 5 - 10 h, and CuAl2O4 was formed by annealing at 1000℃ for 15 h. When annealing under N2 flow, Cu2O was observed rather than CuAlO2. For a sample annealed in air at 1000℃ for 5 h, X-ray photoelectron spectroscopy measurements at various depths from surface revealed that Cu2+ ions are located around the surface, which suggests that the CuO fraction is present near the surface while the CuAlO2 fraction is located at greater depths from the surface of the samples. The depth profile of the sample suggests that there is no pure CuAlO2 layer in the sample, but that crystalline CuAlO2 is present in the sample as a mixture with CuO and Al2O3.
基金the National Natural Science Foundation of China(No.20332060)the Natural Science Foundation of Zhejiang Province(No.Y405407).
文摘We report here a solid-phase synthesis of 1, 4-disubstituted 1, 2, 3-triazole using polystyrene-supported selenium resin. The resin used here not only works as a simple linker, but also assists the crucial α-alkylation reaction and selenoxide syn-elimimation, which ensures the purity of the products.
文摘The nanosized zirconia was synthesized via solid state reaction in the presence of surfactant. The results indicate that crystal phase of zirconia can be controlled by tuning the synthesis parameters such as OH^-/Zr molar ratio, crystallizing temperature and time. It can be transformed among amorphous, tetragonal and monoclinic phases. The transformation is driven by particle size. The research shows the nanocrystalline zirconia possesses the higher thermal stability compared with amorphous framework. The "glow exotherm" can be observed for the amorphous samples. Otherwise, it is in the absence for nanocrystalline samples. Herein, the reason for retention of tetragonal zirconia is demonstrated.
文摘The solid state reduction reaction of Al-10 % CuO mixed powders during mechanical alloying was investigated using XRD, DTA and TEM. The CuO is believed to be gradually reduced by Al, and controlled by diffusion of atoms and ions. Reduced Cu spontaneously reacts with Al to form a metastable equilibrium of Al (Cu) with Al4Cu9 phase during ball-milling, instead of CuAl2 and Al(Cu), which is only observed after annealing.