UWB signal digitization depends, to a large extent, on the accuracy of sampling time. A highaccuracy programmable timer is therefore the key to implementing UWB signal data acquisition. A high-accuracy programmable ti...UWB signal digitization depends, to a large extent, on the accuracy of sampling time. A highaccuracy programmable timer is therefore the key to implementing UWB signal data acquisition. A high-accuracy programmable timer based on the principle of ramp generators is described in this paper. The counting range of the timer is up to 16 bits, the timing precision is 8 ps, and the equivalent sampling rate is up to 50G Hz. No other identical product has been reported so far. This timer was successfully used in the data acquisition system for geological radar signals developed by us.展开更多
The low-thrust trajectory optimization with complicated constraints must be considered in practical engineering. In most literature, this problem is simplified into a two-body model in which the spacecraft is subject ...The low-thrust trajectory optimization with complicated constraints must be considered in practical engineering. In most literature, this problem is simplified into a two-body model in which the spacecraft is subject to the gravitational force at the center of mass and the spacecraft's own electric propulsion only, and the gravity assist (GA) is modeled as an instantaneous velocity increment. This paper presents a method to solve the fuel-optimal problem of low-thrust trajectory with complicated constraints in a full ephemeris model, which is closer to practical engineering conditions. First, it introduces various perturbations, including a third body's gravity, the nonspherical perturbation and the solar radiation pressure in a dynamic equation. Second, it builds two types of equivalent inner constraints to describe the GA. At the same time, the present paper applies a series of techniques, such as a homotopic approach, to enhance the possibility of convergence of the global optimal solution.展开更多
Spacecraft science missions to planets or asteroids have historically visited only one or several celestial bodies per mission.The research goal of this paper is to create a trajectory design algorithm that generates ...Spacecraft science missions to planets or asteroids have historically visited only one or several celestial bodies per mission.The research goal of this paper is to create a trajectory design algorithm that generates trajectory allowing a spacecraft to visit a significant number of asteroids during a single mission.For the problem of global trajectory optimization,even with recent advances in low-thrust trajectory optimization,a full enumeration of this problem is not possible.This work presents an algorithm to traverse the searching space in a practical fashion and generate solutions.The flight sequence is determined in ballistic scenario,and a differential evolution method is used with constructing a three-impulse transfer problem,then the local optimization is implemented with low-thrust propulsion on the basis of the solutions of impulsive trajectories.The proposed method enables trajectory design for multiple asteroids tour by using available low thrust propulsion technology within fuel and time duration constraints.展开更多
A modified direct optimization method is proposed to solve the optimal multi-revolution transfer with low-thrust between Earth-orbits. First, through parameterizing the control steering angles by costate variables, th...A modified direct optimization method is proposed to solve the optimal multi-revolution transfer with low-thrust between Earth-orbits. First, through parameterizing the control steering angles by costate variables, the search space of free parameters has been decreased. Then, in order to obtain the global optimal solution effectively and robustly, the simulated annealing and penalty function strategies were used to handle the constraints, and a GA/SQP hybrid optimization algorithm was utilized to solve the parameter optimization problem, in which, a feasible suboptimal solution obtained by GA was submitted as an initial parameter set to SQP for refinement. Comparing to the classical direct method, this novel method has fewer free parameters, needs not initial guesses, and has higher computation precision. An optimal-fuel transfer problem from LEO to GEO was taken as an example to validate the proposed approach. The results of simulation indicate that our approach is available to solve the problem of optimal muhi-revolution transfer between Earth-orbits.展开更多
With the help of today’s computers, it is always relatively easy to find maximum-likelihood estimators of one or more parameters of any specific statistical distribution, and use these to construct the corresponding ...With the help of today’s computers, it is always relatively easy to find maximum-likelihood estimators of one or more parameters of any specific statistical distribution, and use these to construct the corresponding approximate confidence interval/region, facilitated by the well-known asymptotic properties of the likelihood function. The purpose of this article is to make this approximation substantially more accurate by extending the Taylor expansion of the corresponding probability density function to include quadratic and cubic terms in several centralized sample means, and thus finding the corresponding -proportional correction to the original algorithm. We then demonstrate the new procedure’s usage, both for constructing confidence regions and for testing hypotheses, emphasizing that incorporating this correction carries minimal computational and programming cost. In our final chapter, we present two examples to indicate how significantly the new approximation improves the procedure’s accuracy.展开更多
This paper studies the existence and stability of the artificial equilibrium points (AEPs) in the low-thrust restricted three-body problem when both the primaries are oblate spheroids. The artificial equilibrium point...This paper studies the existence and stability of the artificial equilibrium points (AEPs) in the low-thrust restricted three-body problem when both the primaries are oblate spheroids. The artificial equilibrium points (AEPs) are generated by canceling the gravitational and centrifugal forces with continuous low-thrust at a non-equilibrium point. Some graphical investigations are shown for the effects of the relative parameters which characterized the locations of the AEPs. Also, the numerical values of AEPs have been calculated. The positions of these AEPs will depend not only also on magnitude and directions of low-thrust acceleration. The linear stability of the AEPs has been investigated. We have determined the stability regions in the xy, xz and yz-planes and studied the effect of oblateness parameters A1(0A1?and ?A2(0A2<1) on the motion of the spacecraft. We have found that the stability regions reduce around both the primaries for the increasing values of oblateness of the primaries. Finally, we have plotted the zero velocity curves to determine the possible regions of motion of the spacecraft.展开更多
TheMoon is the only celestial body that human beings have visited.The design of the Earth-Moon transfer orbits is a critical issue in lunar exploration missions.In the 21st century,new lunar missions including the con...TheMoon is the only celestial body that human beings have visited.The design of the Earth-Moon transfer orbits is a critical issue in lunar exploration missions.In the 21st century,new lunar missions including the construction of the lunar space station,the permanent lunar base,and the Earth-Moon transportation network have been proposed,requiring low-cost,expansive launch windows and a fixed arrival epoch for any launch date within the launch window.The low-energy and low-thrust transfers are promising strategies to satisfy the demands.This review provides a detailed landscape of Earth-Moon transfer trajectory design processes,from the traditional patched conic to the state-of-the-art low-energy and low-thrust methods.Essential mechanisms of the various utilized dynamic models and the characteristics of the different design methods are discussed in hopes of helping readers grasp thebasic overviewof the current Earth-Moon transfer orbitdesignmethods anda deep academic background is unnecessary for the context understanding.展开更多
Based on a Hill equation and a nonlinear equation describing the desired and real dynamics of relative motion separately, a predictive controller is brought forward, which makes the real state track the desired ones t...Based on a Hill equation and a nonlinear equation describing the desired and real dynamics of relative motion separately, a predictive controller is brought forward, which makes the real state track the desired ones to keep satellite formation. The stability and robustness of the controller are analyzed. Finally, comparing the simulation results of the proposed controller with that of the traditional, proportional-differential controller shows that the former one is capable of keeping the satellite formation more favorably, considering the disturbances such as the J2 perturbations.展开更多
A brief review of nitrous oxide decomposition catalysts was presented.The features of catalyst operating conditions in low-thrust engines of space vehicles and requirements to monopropellant(hydrogen peroxide,hydrazin...A brief review of nitrous oxide decomposition catalysts was presented.The features of catalyst operating conditions in low-thrust engines of space vehicles and requirements to monopropellant(hydrogen peroxide,hydrazine,nitrous oxide)decomposition catalysts were considered.A scientific basis for development of a nitrous oxide decomposition catalyst and general principles for selection of efficient catalysts were formulated.The results of selecting catalyst systems for the development of decomposition catalysts for N2O as a monopropellant were presented.Preliminary selection of catalyst systems for the development of a catalyst designed for low-thrust rocket engines(LTREs)was carried out:supporter—Al2O3 and ZrO2;active substances—Co,Ni,Fe,Pd,Rh,Pt,Ru,Ir,NiO,Fe2O3,RuO2,Rh2O3,PdO,IrO2,PtO2,CoO,Al2O3,La2NiO4,Nd2NiO4,Pr 2NiO4,La2O3,TiO2,NiO,La2O3,TiO2,ZnO.With 71 references.展开更多
Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illust...Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illustrated to realize Sun synchronous frozen orbit with arbitrary orbital elements using continuous low-thrust.Firstly,according to mean element method,the averaged rate of change of the orbital elements,originating from disturbing constant accelerations over one orbital period,was derived from Gauss' variation of parameters equations.Then,we proposed that binormal acceleration could be used to realize Sun synchronous orbit,and radial or transverse acceleration could be adopted to eliminate the rotation of the argument of the perigee.Finally,amending methods on the control strategies mentioned above were presented to eliminate the residual secular growth.Simulation results showed that the control strategies illustrated in this paper could realize Sun synchronous frozen orbit with arbitrary orbital elements,and can save much more energy than the schemes presented in previous studies,and have no side effect on other orbital parameters' secular motion.展开更多
A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> do...A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokess formula, F<SUP>2</SUP>= tan , relating the wave speed (the Froude number F) and the logarithmic decrement of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokess basic term (singular in ), such that 2M is just somewhat beyond unity, i.e. 2M1. This fundamental criterion is fully validated by solutions for waves of various amplitude-to-water depth ratio =a/h, especially about 0.01, at which M=10 by the criterion. In this pursuit, the class of dwarf solitary waves, defined for waves with 0.01, is discovered as a group of problems more challenging than even the highest wave. For the highest wave, a new solution is determined here to give the maximum height <SUB>hst</SUB>=0.8331990, and speed F<SUB>hst</SUB>=1.290890, accurate to the last significant figure, which seems to be a new record.展开更多
In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM)...In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.展开更多
Although the shape-based method has been proven to be useful for low-thrust trajectory design,and be capable to provide near-optimal solution for a more accurate trajectory optimization method,it is slightly non-effec...Although the shape-based method has been proven to be useful for low-thrust trajectory design,and be capable to provide near-optimal solution for a more accurate trajectory optimization method,it is slightly non-effective when used in some 3D cases.In this paper,a modified 3D shape-based method is proposed for earth trajectory design.In this approach,in consideration of the sinusoidal periodic variation in z direction of actual trajectory,a new exponential sinusoid model is chosen for the out-of-plane motion,with four coefficients such that four scalar out-of-plane boundary conditions can be satisfied.After deriving the 3D shape-based procedure,low-thrust trajectory design example with modest inclination change is given.The results demonstrate that this modified approach is feasible for the transfer trajectory design,and comparing to the former shape-based method,the z direction solution is more coincident with the actual situation,furthermore,the solution may be used for further mission planning,trajectory evaluation and optimization.展开更多
Recently,more attention have been paid on the construction of dipole moment functions(DMF)using theoretical methods.However,the computational methods to construct DMFs are not validated as much as those for potential ...Recently,more attention have been paid on the construction of dipole moment functions(DMF)using theoretical methods.However,the computational methods to construct DMFs are not validated as much as those for potential energy surfaces do.In this letter,using Ar…He as an example,we tested how spectroscopyaccuracy DMFs can be constructed using ab initio methods.We especially focused on the basis set dependency in this scenario,i.e.,the convergence of DMF with the sizes of basis sets,basis set superposition error,and mid-bond functions.We also tested the explicitly correlated method,which converges with smaller basis sets than the conventional methods do.This work can serve as a pictorial sample of all these computational technologies behaving in the context of constructing DMFs.展开更多
As human activities increase,artificially modified terrain is increasingly widely distributed in road,hydrological,and urban construction.Artificially modified terrain plays an important role in protecting from geolog...As human activities increase,artificially modified terrain is increasingly widely distributed in road,hydrological,and urban construction.Artificially modified terrain plays an important role in protecting from geological disasters and in the planning and design of urban landscapes.Compared with natural slopes,artificial slopes have obvious morphological characteristics.Traditional modeling methods are no longer suitable for digital elevation model(DEM)modeling of artificial slopes because they often seriously distort the DEM results.In this paper,from the perspective of morphological characteristics,artificial slopes are divided into two types,namely,regular slopes and irregular slopes,based on whether the top and bottom lines of the artificial slope are parallel.Then,according to the morphological characteristics of the two types of slopes,the following DEM construction methods are designed:the first method(perpendicular+inverse distance weighted)is suitable for regular slopes,and the second method(perpendicular+high-accuracy surface modeling)is suitable for irregular slopes.Finally,a DEM construction test is carried out using the artificial slopes in the study area.The results show that for the regular and irregular slopes in the study area,the construction method proposed in this paper has significant advantages in morphological accuracy over the traditional method(triangulated irregular network),and the elevation accuracy method is also superior to the traditional method(using this method,the mean error and standard deviation error of the regular slope DEM are 0.08 m and 0.13 m,respectively,and those of the irregular slope DEM are 0.08 m and 0.06 m).In addition,the top lines and bottom lines can be included in the DEM construction of the background area after processing the elevation information of the boundary line to realize a smooth transition in the boundary between the artificial slope and the background area.展开更多
Optimization of low-thrust trajectories that involve a larger number of orbit revolutions is considered as a challenging problem.This paper describes a high-precision symplectic method and optimization techniques to s...Optimization of low-thrust trajectories that involve a larger number of orbit revolutions is considered as a challenging problem.This paper describes a high-precision symplectic method and optimization techniques to solve the minimum-energy low-thrust multi-revolution orbit transfer problem. First, the optimal orbit transfer problem is posed as a constrained nonlinear optimal control problem. Then, the constrained nonlinear optimal control problem is converted into an equivalent linear quadratic form near a reference solution. The reference solution is updated iteratively by solving a sequence of linear-quadratic optimal control sub-problems, until convergence. Each sub-problem is solved via a symplectic method in discrete form. To facilitate the convergence of the algorithm, the spacecraft dynamics are expressed via modified equinoctial elements. Interpolating the non-singular equinoctial orbital elements and the spacecraft mass between the initial point and end point is proven beneficial to accelerate the convergence process. Numerical examples reveal that the proposed method displays high accuracy and efficiency.展开更多
A self-mixing interferometer(SMI)with resolution twenty times higher than that of a conventional interferometer is developed by multiple reflections.Only by employing a simple external reflecting mirror,the multiple-p...A self-mixing interferometer(SMI)with resolution twenty times higher than that of a conventional interferometer is developed by multiple reflections.Only by employing a simple external reflecting mirror,the multiple-pass optical configuration can be constructed.The advantage of the configuration is simple and easy to make the light re-injected back into the laser cavity.Theoretical analysis shows that the resolution of measurement is scalable by adjusting the number of reflections.The experiment shows that the proposed method has the optical resolution of approximateλ/40.The influence of displacement sensitivity gain(G)is further analyzed and discussed in practical experiments.展开更多
The shape approximation method has been proven to be rapid and practicable in resolving low-thrust trajectory;however,it still faces the challenges of large deviation from the optimal solution and inability to satisfy...The shape approximation method has been proven to be rapid and practicable in resolving low-thrust trajectory;however,it still faces the challenges of large deviation from the optimal solution and inability to satisfy the specific flight time and fuel mass constraints.In this paper,a modified shape approximation low-thrust model is presented,and a novel constrained optimization algorithm is developed to solve this problem.The proposed method aims at settling the bi-objective optimization orbit involving the twin objectives of minimum flight time and low fuel consumption and enhancing the accuracy of optimized orbit.In particular,a transformed high-order polynomial model based on finite Fourier series is proposed,which can be characterized as a multi-constraint optimization problem.Then,a novel optimization algorithm is specifically developed to optimize the large-scale multi-constraint dynamical equations of shape trajectory.The key performance indicators of the index include minimum flight time,low fuel consumption and bi-objective optimization of the two.Simulation results prove that this approach possesses both the high precision achievable by numerical methods and low computational complexity offered by shape approximation techniques.Besides,the Pareto front of the fuel-time bi-objective optimization orbit is firstly introduced to analyze an intact optimal solution set.Furthermore,we have demonstrated that our proposed approach is appropriate to generate the preliminary orbit for pseudo-spectral method.展开更多
The preliminary mission design of spacecraft missions to asteroids often involves,in the early phases,the selection of candidate target asteroids.The final result of such an analysis is a list of asteroids,ranked with...The preliminary mission design of spacecraft missions to asteroids often involves,in the early phases,the selection of candidate target asteroids.The final result of such an analysis is a list of asteroids,ranked with respect to the necessary propellant to be used,that the spacecraft could potentially reach.In this paper we investigate the sensitivity of the produced asteroids rank to the employed trajectory model in the specific case of a small low-thrust propelled spacecraft beginning its journey from the Sun–Earth L2 Lagrangian point and heading to a rendezvous with some near-Earth asteroid.We consider five increasingly complex trajectory models:impulsive,Lambert,nuclear electric propulsion,nuclear electric propulsion including the Earth’s gravity,solar electric propulsion including the Earth’s gravity and we study the final correlation between the obtained target rankings.We find that the use of a lowthrust trajectory model is of great importance for target selection,since the use of chemical propulsion surrogates leads to favouring less attractive options 19%of times,a percentage that drops to 8%already using a simple nuclear electric propulsion model that neglects the Earth’s gravity effects and thrust dependence on the solar distance.We also find that for the study case considered,a small interplanetary CubeSat named M-ARGO,the inclusion of the Earth’s gravity in the considered dynamics does not affect the target selection significantly.展开更多
This study presents a high-accuracy,all-fber mode division multiplexing(MDM)reconstructive spectrometer(RS).The MDM was achieved by utilizing a custom-designed 3×1 mode-selective photonics lantern to launch disti...This study presents a high-accuracy,all-fber mode division multiplexing(MDM)reconstructive spectrometer(RS).The MDM was achieved by utilizing a custom-designed 3×1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fber(MMF).This facilitated the information transmission by increasing light scattering processes,thereby encoding the optical spectra more comprehensively into speckle patterns.Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished.Compared to methods employing single-mode excitation and two-mode excitation,the three-mode excitation method reduced the recovered error by 88%and 50%respectively.A resolution enhancement approach based on alternating mode modulation was proposed,reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function.The proof-of-concept study can be further extended to encompass diverse programmable mode excitations.It is not only succinct and highly efcient but also well-suited for a variety of high-accuracy,high-resolution spectral measurement scenarios.展开更多
基金This research is sponsored by National Natural Science Foundation of China,Special Fund of Scientific Instruments:The studyand development of flameproof ground penetrating radar (50127402).
文摘UWB signal digitization depends, to a large extent, on the accuracy of sampling time. A highaccuracy programmable timer is therefore the key to implementing UWB signal data acquisition. A high-accuracy programmable timer based on the principle of ramp generators is described in this paper. The counting range of the timer is up to 16 bits, the timing precision is 8 ps, and the equivalent sampling rate is up to 50G Hz. No other identical product has been reported so far. This timer was successfully used in the data acquisition system for geological radar signals developed by us.
文摘The low-thrust trajectory optimization with complicated constraints must be considered in practical engineering. In most literature, this problem is simplified into a two-body model in which the spacecraft is subject to the gravitational force at the center of mass and the spacecraft's own electric propulsion only, and the gravity assist (GA) is modeled as an instantaneous velocity increment. This paper presents a method to solve the fuel-optimal problem of low-thrust trajectory with complicated constraints in a full ephemeris model, which is closer to practical engineering conditions. First, it introduces various perturbations, including a third body's gravity, the nonspherical perturbation and the solar radiation pressure in a dynamic equation. Second, it builds two types of equivalent inner constraints to describe the GA. At the same time, the present paper applies a series of techniques, such as a homotopic approach, to enhance the possibility of convergence of the global optimal solution.
文摘Spacecraft science missions to planets or asteroids have historically visited only one or several celestial bodies per mission.The research goal of this paper is to create a trajectory design algorithm that generates trajectory allowing a spacecraft to visit a significant number of asteroids during a single mission.For the problem of global trajectory optimization,even with recent advances in low-thrust trajectory optimization,a full enumeration of this problem is not possible.This work presents an algorithm to traverse the searching space in a practical fashion and generate solutions.The flight sequence is determined in ballistic scenario,and a differential evolution method is used with constructing a three-impulse transfer problem,then the local optimization is implemented with low-thrust propulsion on the basis of the solutions of impulsive trajectories.The proposed method enables trajectory design for multiple asteroids tour by using available low thrust propulsion technology within fuel and time duration constraints.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10672044)
文摘A modified direct optimization method is proposed to solve the optimal multi-revolution transfer with low-thrust between Earth-orbits. First, through parameterizing the control steering angles by costate variables, the search space of free parameters has been decreased. Then, in order to obtain the global optimal solution effectively and robustly, the simulated annealing and penalty function strategies were used to handle the constraints, and a GA/SQP hybrid optimization algorithm was utilized to solve the parameter optimization problem, in which, a feasible suboptimal solution obtained by GA was submitted as an initial parameter set to SQP for refinement. Comparing to the classical direct method, this novel method has fewer free parameters, needs not initial guesses, and has higher computation precision. An optimal-fuel transfer problem from LEO to GEO was taken as an example to validate the proposed approach. The results of simulation indicate that our approach is available to solve the problem of optimal muhi-revolution transfer between Earth-orbits.
文摘With the help of today’s computers, it is always relatively easy to find maximum-likelihood estimators of one or more parameters of any specific statistical distribution, and use these to construct the corresponding approximate confidence interval/region, facilitated by the well-known asymptotic properties of the likelihood function. The purpose of this article is to make this approximation substantially more accurate by extending the Taylor expansion of the corresponding probability density function to include quadratic and cubic terms in several centralized sample means, and thus finding the corresponding -proportional correction to the original algorithm. We then demonstrate the new procedure’s usage, both for constructing confidence regions and for testing hypotheses, emphasizing that incorporating this correction carries minimal computational and programming cost. In our final chapter, we present two examples to indicate how significantly the new approximation improves the procedure’s accuracy.
文摘This paper studies the existence and stability of the artificial equilibrium points (AEPs) in the low-thrust restricted three-body problem when both the primaries are oblate spheroids. The artificial equilibrium points (AEPs) are generated by canceling the gravitational and centrifugal forces with continuous low-thrust at a non-equilibrium point. Some graphical investigations are shown for the effects of the relative parameters which characterized the locations of the AEPs. Also, the numerical values of AEPs have been calculated. The positions of these AEPs will depend not only also on magnitude and directions of low-thrust acceleration. The linear stability of the AEPs has been investigated. We have determined the stability regions in the xy, xz and yz-planes and studied the effect of oblateness parameters A1(0A1?and ?A2(0A2<1) on the motion of the spacecraft. We have found that the stability regions reduce around both the primaries for the increasing values of oblateness of the primaries. Finally, we have plotted the zero velocity curves to determine the possible regions of motion of the spacecraft.
基金supported by the National Key Research and Development Program of China(No.2021YFA0717100)the National Natural Science Foundation of China(Nos.12072270 and U2013206).
文摘TheMoon is the only celestial body that human beings have visited.The design of the Earth-Moon transfer orbits is a critical issue in lunar exploration missions.In the 21st century,new lunar missions including the construction of the lunar space station,the permanent lunar base,and the Earth-Moon transportation network have been proposed,requiring low-cost,expansive launch windows and a fixed arrival epoch for any launch date within the launch window.The low-energy and low-thrust transfers are promising strategies to satisfy the demands.This review provides a detailed landscape of Earth-Moon transfer trajectory design processes,from the traditional patched conic to the state-of-the-art low-energy and low-thrust methods.Essential mechanisms of the various utilized dynamic models and the characteristics of the different design methods are discussed in hopes of helping readers grasp thebasic overviewof the current Earth-Moon transfer orbitdesignmethods anda deep academic background is unnecessary for the context understanding.
文摘Based on a Hill equation and a nonlinear equation describing the desired and real dynamics of relative motion separately, a predictive controller is brought forward, which makes the real state track the desired ones to keep satellite formation. The stability and robustness of the controller are analyzed. Finally, comparing the simulation results of the proposed controller with that of the traditional, proportional-differential controller shows that the former one is capable of keeping the satellite formation more favorably, considering the disturbances such as the J2 perturbations.
文摘A brief review of nitrous oxide decomposition catalysts was presented.The features of catalyst operating conditions in low-thrust engines of space vehicles and requirements to monopropellant(hydrogen peroxide,hydrazine,nitrous oxide)decomposition catalysts were considered.A scientific basis for development of a nitrous oxide decomposition catalyst and general principles for selection of efficient catalysts were formulated.The results of selecting catalyst systems for the development of decomposition catalysts for N2O as a monopropellant were presented.Preliminary selection of catalyst systems for the development of a catalyst designed for low-thrust rocket engines(LTREs)was carried out:supporter—Al2O3 and ZrO2;active substances—Co,Ni,Fe,Pd,Rh,Pt,Ru,Ir,NiO,Fe2O3,RuO2,Rh2O3,PdO,IrO2,PtO2,CoO,Al2O3,La2NiO4,Nd2NiO4,Pr 2NiO4,La2O3,TiO2,NiO,La2O3,TiO2,ZnO.With 71 references.
基金supported by the National Natural Science Foundation of China (10702078)the Research Foundation of National University of Defense Technology (JC08-01-05)
文摘Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illustrated to realize Sun synchronous frozen orbit with arbitrary orbital elements using continuous low-thrust.Firstly,according to mean element method,the averaged rate of change of the orbital elements,originating from disturbing constant accelerations over one orbital period,was derived from Gauss' variation of parameters equations.Then,we proposed that binormal acceleration could be used to realize Sun synchronous orbit,and radial or transverse acceleration could be adopted to eliminate the rotation of the argument of the perigee.Finally,amending methods on the control strategies mentioned above were presented to eliminate the residual secular growth.Simulation results showed that the control strategies illustrated in this paper could realize Sun synchronous frozen orbit with arbitrary orbital elements,and can save much more energy than the schemes presented in previous studies,and have no side effect on other orbital parameters' secular motion.
文摘A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokess formula, F<SUP>2</SUP>= tan , relating the wave speed (the Froude number F) and the logarithmic decrement of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokess basic term (singular in ), such that 2M is just somewhat beyond unity, i.e. 2M1. This fundamental criterion is fully validated by solutions for waves of various amplitude-to-water depth ratio =a/h, especially about 0.01, at which M=10 by the criterion. In this pursuit, the class of dwarf solitary waves, defined for waves with 0.01, is discovered as a group of problems more challenging than even the highest wave. For the highest wave, a new solution is determined here to give the maximum height <SUB>hst</SUB>=0.8331990, and speed F<SUB>hst</SUB>=1.290890, accurate to the last significant figure, which seems to be a new record.
基金Project supported by the National Natural Science Foundation of China(Grant No.41474161)the National High-Technology Program of China(Grant No.2015AA123703)
文摘In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61005060)
文摘Although the shape-based method has been proven to be useful for low-thrust trajectory design,and be capable to provide near-optimal solution for a more accurate trajectory optimization method,it is slightly non-effective when used in some 3D cases.In this paper,a modified 3D shape-based method is proposed for earth trajectory design.In this approach,in consideration of the sinusoidal periodic variation in z direction of actual trajectory,a new exponential sinusoid model is chosen for the out-of-plane motion,with four coefficients such that four scalar out-of-plane boundary conditions can be satisfied.After deriving the 3D shape-based procedure,low-thrust trajectory design example with modest inclination change is given.The results demonstrate that this modified approach is feasible for the transfer trajectory design,and comparing to the former shape-based method,the z direction solution is more coincident with the actual situation,furthermore,the solution may be used for further mission planning,trajectory evaluation and optimization.
基金supported by the National Natural Science Foundation of China(No.21533003,No.21773081 and No.22073035)。
文摘Recently,more attention have been paid on the construction of dipole moment functions(DMF)using theoretical methods.However,the computational methods to construct DMFs are not validated as much as those for potential energy surfaces do.In this letter,using Ar…He as an example,we tested how spectroscopyaccuracy DMFs can be constructed using ab initio methods.We especially focused on the basis set dependency in this scenario,i.e.,the convergence of DMF with the sizes of basis sets,basis set superposition error,and mid-bond functions.We also tested the explicitly correlated method,which converges with smaller basis sets than the conventional methods do.This work can serve as a pictorial sample of all these computational technologies behaving in the context of constructing DMFs.
基金supported by Key Project of Natural Science Research of Anhui Provincial Department of Education(No.KJ2020A0722,No.KJ2020A0721,No.KJ2020A0705)Major Project of Natural Science Research of Anhui Provincial Department of Education(No.KJ2021ZD0130)+3 种基金General Project of Natural Science Research of Anhui Provincial Department of Education(No.KJ2020B01,No.KJ2020B02)The guiding plan project of Chuzhou science and Technology Bureau(No.2021ZD008)Grant from State Key Laboratory of Resources and Environmental Information System in 2018the Key Project of Research and Development in Chuzhou Science and Technology Program(No.2020ZG016)。
文摘As human activities increase,artificially modified terrain is increasingly widely distributed in road,hydrological,and urban construction.Artificially modified terrain plays an important role in protecting from geological disasters and in the planning and design of urban landscapes.Compared with natural slopes,artificial slopes have obvious morphological characteristics.Traditional modeling methods are no longer suitable for digital elevation model(DEM)modeling of artificial slopes because they often seriously distort the DEM results.In this paper,from the perspective of morphological characteristics,artificial slopes are divided into two types,namely,regular slopes and irregular slopes,based on whether the top and bottom lines of the artificial slope are parallel.Then,according to the morphological characteristics of the two types of slopes,the following DEM construction methods are designed:the first method(perpendicular+inverse distance weighted)is suitable for regular slopes,and the second method(perpendicular+high-accuracy surface modeling)is suitable for irregular slopes.Finally,a DEM construction test is carried out using the artificial slopes in the study area.The results show that for the regular and irregular slopes in the study area,the construction method proposed in this paper has significant advantages in morphological accuracy over the traditional method(triangulated irregular network),and the elevation accuracy method is also superior to the traditional method(using this method,the mean error and standard deviation error of the regular slope DEM are 0.08 m and 0.13 m,respectively,and those of the irregular slope DEM are 0.08 m and 0.06 m).In addition,the top lines and bottom lines can be included in the DEM construction of the background area after processing the elevation information of the boundary line to realize a smooth transition in the boundary between the artificial slope and the background area.
基金supported by the National Natural Science Foundation of China(Grant Nos.11672146,11432001)the 2015 Chinese National Postdoctoral International Exchange Program
文摘Optimization of low-thrust trajectories that involve a larger number of orbit revolutions is considered as a challenging problem.This paper describes a high-precision symplectic method and optimization techniques to solve the minimum-energy low-thrust multi-revolution orbit transfer problem. First, the optimal orbit transfer problem is posed as a constrained nonlinear optimal control problem. Then, the constrained nonlinear optimal control problem is converted into an equivalent linear quadratic form near a reference solution. The reference solution is updated iteratively by solving a sequence of linear-quadratic optimal control sub-problems, until convergence. Each sub-problem is solved via a symplectic method in discrete form. To facilitate the convergence of the algorithm, the spacecraft dynamics are expressed via modified equinoctial elements. Interpolating the non-singular equinoctial orbital elements and the spacecraft mass between the initial point and end point is proven beneficial to accelerate the convergence process. Numerical examples reveal that the proposed method displays high accuracy and efficiency.
基金supported by the National Natural Science Foundation of China(Nos.61675174 and 61308048)
文摘A self-mixing interferometer(SMI)with resolution twenty times higher than that of a conventional interferometer is developed by multiple reflections.Only by employing a simple external reflecting mirror,the multiple-pass optical configuration can be constructed.The advantage of the configuration is simple and easy to make the light re-injected back into the laser cavity.Theoretical analysis shows that the resolution of measurement is scalable by adjusting the number of reflections.The experiment shows that the proposed method has the optical resolution of approximateλ/40.The influence of displacement sensitivity gain(G)is further analyzed and discussed in practical experiments.
基金supported by the National Natural Science Foundation of China(Nos.61627810,61790562,61403096).
文摘The shape approximation method has been proven to be rapid and practicable in resolving low-thrust trajectory;however,it still faces the challenges of large deviation from the optimal solution and inability to satisfy the specific flight time and fuel mass constraints.In this paper,a modified shape approximation low-thrust model is presented,and a novel constrained optimization algorithm is developed to solve this problem.The proposed method aims at settling the bi-objective optimization orbit involving the twin objectives of minimum flight time and low fuel consumption and enhancing the accuracy of optimized orbit.In particular,a transformed high-order polynomial model based on finite Fourier series is proposed,which can be characterized as a multi-constraint optimization problem.Then,a novel optimization algorithm is specifically developed to optimize the large-scale multi-constraint dynamical equations of shape trajectory.The key performance indicators of the index include minimum flight time,low fuel consumption and bi-objective optimization of the two.Simulation results prove that this approach possesses both the high precision achievable by numerical methods and low computational complexity offered by shape approximation techniques.Besides,the Pareto front of the fuel-time bi-objective optimization orbit is firstly introduced to analyze an intact optimal solution set.Furthermore,we have demonstrated that our proposed approach is appropriate to generate the preliminary orbit for pseudo-spectral method.
文摘The preliminary mission design of spacecraft missions to asteroids often involves,in the early phases,the selection of candidate target asteroids.The final result of such an analysis is a list of asteroids,ranked with respect to the necessary propellant to be used,that the spacecraft could potentially reach.In this paper we investigate the sensitivity of the produced asteroids rank to the employed trajectory model in the specific case of a small low-thrust propelled spacecraft beginning its journey from the Sun–Earth L2 Lagrangian point and heading to a rendezvous with some near-Earth asteroid.We consider five increasingly complex trajectory models:impulsive,Lambert,nuclear electric propulsion,nuclear electric propulsion including the Earth’s gravity,solar electric propulsion including the Earth’s gravity and we study the final correlation between the obtained target rankings.We find that the use of a lowthrust trajectory model is of great importance for target selection,since the use of chemical propulsion surrogates leads to favouring less attractive options 19%of times,a percentage that drops to 8%already using a simple nuclear electric propulsion model that neglects the Earth’s gravity effects and thrust dependence on the solar distance.We also find that for the study case considered,a small interplanetary CubeSat named M-ARGO,the inclusion of the Earth’s gravity in the considered dynamics does not affect the target selection significantly.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62305391)Hunan Innovative Province Construction Project(No.2019RS3017)Scientifc Fund of National University of Defense Technology(No.22-061).
文摘This study presents a high-accuracy,all-fber mode division multiplexing(MDM)reconstructive spectrometer(RS).The MDM was achieved by utilizing a custom-designed 3×1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fber(MMF).This facilitated the information transmission by increasing light scattering processes,thereby encoding the optical spectra more comprehensively into speckle patterns.Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished.Compared to methods employing single-mode excitation and two-mode excitation,the three-mode excitation method reduced the recovered error by 88%and 50%respectively.A resolution enhancement approach based on alternating mode modulation was proposed,reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function.The proof-of-concept study can be further extended to encompass diverse programmable mode excitations.It is not only succinct and highly efcient but also well-suited for a variety of high-accuracy,high-resolution spectral measurement scenarios.