Bt5198, a new rice restorer line containing Bt gene, was developed from the cross and backcross of the elite restorer line Chenghui 177 with Bt Minghui 63, a transgenic Bt restorer line. The inbred lines were evaluate...Bt5198, a new rice restorer line containing Bt gene, was developed from the cross and backcross of the elite restorer line Chenghui 177 with Bt Minghui 63, a transgenic Bt restorer line. The inbred lines were evaluated using PCR amplification, test paper evaluation, insect resistance evaluation in both the laboratory and paddy fields, nursery evaluation of rice blast resistance and pedigree selection of agronomic traits. Larval mortalities on Bt5198 and Bt Minghui 63 were 100% when rice culms were inoculated with the eggs of the striped stem borer (SSB) in the laboratory. Bt5198 was highly resistant against SSB and the yellow stem borer (YSB) under field conditions. The F1 hybrids derived from Bt5198 and four cytoplasmic male sterile (CMS) lines were also highly resistant to SSB and YSB and had a significant heterosis. Two-year evaluation of rice blast resistance confirmed that the resistance levels of Bt5198 to leaf blast and neck blast were similar to those of Chenghui 177 and significantly better than those of Bt Minghui 63. Seed germination ability and pollen yield of Bt5198 were similar with Chenghui 177, suggesting that the introduction of the Bt gene into the new restorer line had no significant effects on seed vitality or the yield of seed production. To identify the presence of the Bt gene, it was effective to combine test paper examination with the evaluation of insect-resistance, both in the laboratory and under field conditions.展开更多
Background:Potassium(K)deficiency has become a common field production problem following the widespread adoption of Bacillus thuringiensis(Bt)transgenic cotton(Gossypium hirsutum L.)worldwide.The purpose of this study...Background:Potassium(K)deficiency has become a common field production problem following the widespread adoption of Bacillus thuringiensis(Bt)transgenic cotton(Gossypium hirsutum L.)worldwide.The purpose of this study was to clarify whether the introduction of Bt gene directly reduces the K-use efficiency of cotton to induce K deficiency.Results:The cotton variety,Jihe 321(wild type,WT)and its two Bt(Cry1Ac)-transgenic overexpression lines(OE-29317,OE-29312)were studied in field with low soil-test K+(47.8 mg·kg^(−1)).In the field with low soil-test K+,only OE-29317 had less biomass and K+accumulation than the WT at some growth stages.Both Bt lines produced similar or even greater seed cotton yield than WT in the field.When the Bt gene(~70%)in OE-29317 and OE-29312 plants was silenced by virus-induced gene silencing(VIGS),the VIGS-Bt plants did not produce more biomass than VIGSgreen fluorescent protein(control)plants.Conclusions:The introduction of Bt gene did not necessarily hinder the K use efficiency of the cotton lines under this study.展开更多
By means of Agrobacterium-mediated transformation, 43 kanamycin-resistant buds of Chinese cabbage were got. PCR, PCR-Southern blot and dot blot analysis were used to identify and characterize the putative transgenic p...By means of Agrobacterium-mediated transformation, 43 kanamycin-resistant buds of Chinese cabbage were got. PCR, PCR-Southern blot and dot blot analysis were used to identify and characterize the putative transgenic plants. 26 plants had the predicted bands of the fragment of npt Ⅱ gene. Insect bioassays of 4 transformants showed that toxic protein had been translated and the translation levels were different among these transformants.展开更多
The Bt Cry IA (C) chloroplast expression cassette and OC chloroplast expression cassette were constructed. The Bt expression cassette contained the 3.5 kb wild type Bt Cry I4(C) gene under the control of the strong li...The Bt Cry IA (C) chloroplast expression cassette and OC chloroplast expression cassette were constructed. The Bt expression cassette contained the 3.5 kb wild type Bt Cry I4(C) gene under the control of the strong light-induced psbA promoter and terminator from rice (Oryza saliva . L) chloroplast, the gene: trnH-psbA-trnk from tobacco (Nicotiana tabacum. L) as the homologous fragment. The OC chloroplast expression cassette contained the OC gene under the control of 16S promoter and terminator from tobacco, the tobacco gene: psbA-ORF512 as homologous fragment. The two cassettes both had the aadA gene expression cassette as the selectable marker. Leaves of tobacco were cotransformed with the particle bombardment method. After selection by spectinomycin, the transformants were obtained. The integration of Bt and OC gene were confirmed by Southern-blotting analysis, and Western-blotting analysis. Proteinase inhibitor assays showed that the Bt and OC gene had expressed. Bioassays showed that the transgenic tobacco had a significant resistance to the larvae of cotton bollworm (helicoverpa zea).展开更多
Bt corn is one of the top three large-scale commercialized transgenic crops around the world. It is increasingly clear that the complementary durable approaches for pest control, which combine the endogenous defense o...Bt corn is one of the top three large-scale commercialized transgenic crops around the world. It is increasingly clear that the complementary durable approaches for pest control, which combine the endogenous defense of the crop with the introduced foreign genes, are promising alternative strategies for pest resistance management and the next generation of insect-resistant transgenic crops. In the present study, we tested the inducible effects of exogenous jasmonic acid (JA) on direct-defense chemical content, Bt protein concentration, and related gene expression in the leaves of Bt corn cultivar 34B24 and non-Bt cultivar 34B23 by chemical analysis, ELISA, and RT-PCR. The results show that the expression of LOX, PR-2a, MPI, and PR-I genes in the treated leaf (the first leaf) was promoted by exogenous JA both in 34B24 and 34B23. As compared with the control, the concentration of DIMBOA in the treated leaf was significantly increased by 63 and 18% for 34B24 and 34B23, respectively. The total phenolic acid was also increased by 24 and 12% for both 34B24 and 34B23. The Bt protein content of 34B24 in the treated leaf was increased by 13% but decreased significantly by 27% in the second leaf. The induced response of 34B24 was in a systemic way and was much stronger than that of 34B23. Those findings indicated that there is a synergistic interaction between Bt gene and internally induced chemical defense system triggered by externally applied JA in Bt corn.展开更多
[Objective] The paper was to study the expression characteristics and borer resistance of Bt gene of Songjing 9 (1C^*). [Method] With super japonica rice Songjing 9 as the receptor, transgenic crylC^* super japon...[Objective] The paper was to study the expression characteristics and borer resistance of Bt gene of Songjing 9 (1C^*). [Method] With super japonica rice Songjing 9 as the receptor, transgenic crylC^* super japonica rice Songjing 9 (1C^*) regulated by ubi promoter was created by agrobacterium-mediated genetic transformation method. Ten strains of transgenic super japonica rice formed from different transformation events were planted in the field; the Tt-mRNA of leaf, stem-sheath and young spikelet at booting stage were detected by real-time fluorescent quantitative PCR; the Bt protein content of leaf, stem-sheath and young spikelet and harvested brown rice were detected by enzyme-linked immunosorbent assay (ELISA); the white head rate damaged by Chilo suppressalis was manually investigated. [Result] The Bt-mRNA and Bt protein content of various organs and Bt protein content of mature brown rice at booting stage of Songjing 9 (1C^*) significantly differed among strains; there was no correlation relationship in Bt-mRNA and Bt protein content between leaf and stem-sheath, between leaf and young spikelet, and between stem-sheath and young spikelet; there was no relation between Bt-mRNA or Bt protein content of leaf, stem-sheath and young spikelet and Bt protein content of brown rice; there was positive correlation between Bt-mRNA and Bt protein content in the same organ such as leaf, stem-sheath and young spikelet at booting stage; such strains as Songjing 9 (1C^*), whether the Bt gene expression was high or low, showed good resistance against C.suppressalis. This indicated that there were differences in Bt gene expression in different strains of transgenic cry1C^* super japonica rice or different organs of the same strain; there was no relation in Bt gene expression among different organs; the Bt-mRNA and protein content of the same organ usually had consistent expression; the Bt gene expression of various organs had nothing to do with the Bt protein content of brown rice. [Conclusion] The Bt gene and its expression cassette can meet the requirement of cultivating japonica rice varieties against stem borers.展开更多
The development of transgenic cotton varieties resistant to bollworms has been a major success of applying plant genetic engineering technology to agriculture,evidenced by phenomenal increase in
Emergence of transgenic Bt-cotton technology has opened up a new chapter in Indian cotton production in 21st century.The cry1Ac gene of Monsanto derived from American Upland Coker-312 background was not directly suita...Emergence of transgenic Bt-cotton technology has opened up a new chapter in Indian cotton production in 21st century.The cry1Ac gene of Monsanto derived from American Upland Coker-312 background was not directly suitable for varied cotton growing situations in India.Delivery of展开更多
Cotton plays a crucial role in shaping Indian economy and rural livelihoods.The cotton crop is prone to numerous insect pests,necessitating insecticidal application,which increases production costs.The advent of the e...Cotton plays a crucial role in shaping Indian economy and rural livelihoods.The cotton crop is prone to numerous insect pests,necessitating insecticidal application,which increases production costs.The advent of the expression of Bacillus thuringiensis(Bt)insecticidal protein in cotton has significantly reduced the burden of pest without compromising environmental or human health.After the introduction of transgenic cotton,the cultivated area expanded to 22 million hectares,with a 64% increase in adoption by farmers worldwide.Currently,Bt cotton accounts for 93% of the cultivated cotton area in India.However,extensive use of Bt cotton has accelerated resistance development in pests like the pink bollworm.Furthermore,the overreliance on Bt cotton has reduced the use of broad-spectrum pesticides,favouring the emergence of secondary pests with significant challenges.This emphasizes the urgent necessity for developing novel pest management strategies.The high-dose and refuge strategy was initially effective for managing pest resistance in Bt cotton,but its implementation in India faced challenges due to misunderstandings about the use of non-Bt refuge crops.Although gene pyramiding was introduced as a solution,combining mono toxin also led to instances of cross-resistance.Therefore,there is a need for further exploration of biotechnological approaches to manage insect resistance in Bt cotton.Advanced biotechnological strategies,such as sterile insect release,RNA interference(RNAi)-mediated gene silencing,stacking Bt with RNAi,and genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR-Cas),offer promising tools for identifying and managing resistance genes in insects.Additionally,CRISPR-mediated gene drives and the development of novel biopesticides present potential avenues for effective pest management in cotton cultivation.These innovative approaches could significantly enhance the sustainability and efficacy of pest resistance management in Bt cotton.展开更多
基金supported by the grant from the National Research and Development Project of Transgenic Crops of Ministry of Science and Technology of China (Grant No.JY03-B-11)
文摘Bt5198, a new rice restorer line containing Bt gene, was developed from the cross and backcross of the elite restorer line Chenghui 177 with Bt Minghui 63, a transgenic Bt restorer line. The inbred lines were evaluated using PCR amplification, test paper evaluation, insect resistance evaluation in both the laboratory and paddy fields, nursery evaluation of rice blast resistance and pedigree selection of agronomic traits. Larval mortalities on Bt5198 and Bt Minghui 63 were 100% when rice culms were inoculated with the eggs of the striped stem borer (SSB) in the laboratory. Bt5198 was highly resistant against SSB and the yellow stem borer (YSB) under field conditions. The F1 hybrids derived from Bt5198 and four cytoplasmic male sterile (CMS) lines were also highly resistant to SSB and YSB and had a significant heterosis. Two-year evaluation of rice blast resistance confirmed that the resistance levels of Bt5198 to leaf blast and neck blast were similar to those of Chenghui 177 and significantly better than those of Bt Minghui 63. Seed germination ability and pollen yield of Bt5198 were similar with Chenghui 177, suggesting that the introduction of the Bt gene into the new restorer line had no significant effects on seed vitality or the yield of seed production. To identify the presence of the Bt gene, it was effective to combine test paper examination with the evaluation of insect-resistance, both in the laboratory and under field conditions.
文摘Background:Potassium(K)deficiency has become a common field production problem following the widespread adoption of Bacillus thuringiensis(Bt)transgenic cotton(Gossypium hirsutum L.)worldwide.The purpose of this study was to clarify whether the introduction of Bt gene directly reduces the K-use efficiency of cotton to induce K deficiency.Results:The cotton variety,Jihe 321(wild type,WT)and its two Bt(Cry1Ac)-transgenic overexpression lines(OE-29317,OE-29312)were studied in field with low soil-test K+(47.8 mg·kg^(−1)).In the field with low soil-test K+,only OE-29317 had less biomass and K+accumulation than the WT at some growth stages.Both Bt lines produced similar or even greater seed cotton yield than WT in the field.When the Bt gene(~70%)in OE-29317 and OE-29312 plants was silenced by virus-induced gene silencing(VIGS),the VIGS-Bt plants did not produce more biomass than VIGSgreen fluorescent protein(control)plants.Conclusions:The introduction of Bt gene did not necessarily hinder the K use efficiency of the cotton lines under this study.
基金This work was supported by the Ministry of Education and Wuhan Key Sci-Tech Program
文摘By means of Agrobacterium-mediated transformation, 43 kanamycin-resistant buds of Chinese cabbage were got. PCR, PCR-Southern blot and dot blot analysis were used to identify and characterize the putative transgenic plants. 26 plants had the predicted bands of the fragment of npt Ⅱ gene. Insect bioassays of 4 transformants showed that toxic protein had been translated and the translation levels were different among these transformants.
基金supported by the National Natural Science Foundation of China(39570361).
文摘The Bt Cry IA (C) chloroplast expression cassette and OC chloroplast expression cassette were constructed. The Bt expression cassette contained the 3.5 kb wild type Bt Cry I4(C) gene under the control of the strong light-induced psbA promoter and terminator from rice (Oryza saliva . L) chloroplast, the gene: trnH-psbA-trnk from tobacco (Nicotiana tabacum. L) as the homologous fragment. The OC chloroplast expression cassette contained the OC gene under the control of 16S promoter and terminator from tobacco, the tobacco gene: psbA-ORF512 as homologous fragment. The two cassettes both had the aadA gene expression cassette as the selectable marker. Leaves of tobacco were cotransformed with the particle bombardment method. After selection by spectinomycin, the transformants were obtained. The integration of Bt and OC gene were confirmed by Southern-blotting analysis, and Western-blotting analysis. Proteinase inhibitor assays showed that the Bt and OC gene had expressed. Bioassays showed that the transgenic tobacco had a significant resistance to the larvae of cotton bollworm (helicoverpa zea).
基金the National Natural Science Foundation of China(30470335,30770402)Natural Science Foundation of Guangdong Province,China(E039254,06025813).
文摘Bt corn is one of the top three large-scale commercialized transgenic crops around the world. It is increasingly clear that the complementary durable approaches for pest control, which combine the endogenous defense of the crop with the introduced foreign genes, are promising alternative strategies for pest resistance management and the next generation of insect-resistant transgenic crops. In the present study, we tested the inducible effects of exogenous jasmonic acid (JA) on direct-defense chemical content, Bt protein concentration, and related gene expression in the leaves of Bt corn cultivar 34B24 and non-Bt cultivar 34B23 by chemical analysis, ELISA, and RT-PCR. The results show that the expression of LOX, PR-2a, MPI, and PR-I genes in the treated leaf (the first leaf) was promoted by exogenous JA both in 34B24 and 34B23. As compared with the control, the concentration of DIMBOA in the treated leaf was significantly increased by 63 and 18% for 34B24 and 34B23, respectively. The total phenolic acid was also increased by 24 and 12% for both 34B24 and 34B23. The Bt protein content of 34B24 in the treated leaf was increased by 13% but decreased significantly by 27% in the second leaf. The induced response of 34B24 was in a systemic way and was much stronger than that of 34B23. Those findings indicated that there is a synergistic interaction between Bt gene and internally induced chemical defense system triggered by externally applied JA in Bt corn.
基金Supported by National High Technology Research and Development Program(863 plan)of China(2014AA10A600)National Major Project for Transgenic Organism Breeding of China(2016ZX08001001-001-007)Open Project of Key Laboratory of Molecular Biology in Colleges and Universities of Heilongjiang Province(1206)
文摘[Objective] The paper was to study the expression characteristics and borer resistance of Bt gene of Songjing 9 (1C^*). [Method] With super japonica rice Songjing 9 as the receptor, transgenic crylC^* super japonica rice Songjing 9 (1C^*) regulated by ubi promoter was created by agrobacterium-mediated genetic transformation method. Ten strains of transgenic super japonica rice formed from different transformation events were planted in the field; the Tt-mRNA of leaf, stem-sheath and young spikelet at booting stage were detected by real-time fluorescent quantitative PCR; the Bt protein content of leaf, stem-sheath and young spikelet and harvested brown rice were detected by enzyme-linked immunosorbent assay (ELISA); the white head rate damaged by Chilo suppressalis was manually investigated. [Result] The Bt-mRNA and Bt protein content of various organs and Bt protein content of mature brown rice at booting stage of Songjing 9 (1C^*) significantly differed among strains; there was no correlation relationship in Bt-mRNA and Bt protein content between leaf and stem-sheath, between leaf and young spikelet, and between stem-sheath and young spikelet; there was no relation between Bt-mRNA or Bt protein content of leaf, stem-sheath and young spikelet and Bt protein content of brown rice; there was positive correlation between Bt-mRNA and Bt protein content in the same organ such as leaf, stem-sheath and young spikelet at booting stage; such strains as Songjing 9 (1C^*), whether the Bt gene expression was high or low, showed good resistance against C.suppressalis. This indicated that there were differences in Bt gene expression in different strains of transgenic cry1C^* super japonica rice or different organs of the same strain; there was no relation in Bt gene expression among different organs; the Bt-mRNA and protein content of the same organ usually had consistent expression; the Bt gene expression of various organs had nothing to do with the Bt protein content of brown rice. [Conclusion] The Bt gene and its expression cassette can meet the requirement of cultivating japonica rice varieties against stem borers.
文摘The development of transgenic cotton varieties resistant to bollworms has been a major success of applying plant genetic engineering technology to agriculture,evidenced by phenomenal increase in
文摘Emergence of transgenic Bt-cotton technology has opened up a new chapter in Indian cotton production in 21st century.The cry1Ac gene of Monsanto derived from American Upland Coker-312 background was not directly suitable for varied cotton growing situations in India.Delivery of
文摘Cotton plays a crucial role in shaping Indian economy and rural livelihoods.The cotton crop is prone to numerous insect pests,necessitating insecticidal application,which increases production costs.The advent of the expression of Bacillus thuringiensis(Bt)insecticidal protein in cotton has significantly reduced the burden of pest without compromising environmental or human health.After the introduction of transgenic cotton,the cultivated area expanded to 22 million hectares,with a 64% increase in adoption by farmers worldwide.Currently,Bt cotton accounts for 93% of the cultivated cotton area in India.However,extensive use of Bt cotton has accelerated resistance development in pests like the pink bollworm.Furthermore,the overreliance on Bt cotton has reduced the use of broad-spectrum pesticides,favouring the emergence of secondary pests with significant challenges.This emphasizes the urgent necessity for developing novel pest management strategies.The high-dose and refuge strategy was initially effective for managing pest resistance in Bt cotton,but its implementation in India faced challenges due to misunderstandings about the use of non-Bt refuge crops.Although gene pyramiding was introduced as a solution,combining mono toxin also led to instances of cross-resistance.Therefore,there is a need for further exploration of biotechnological approaches to manage insect resistance in Bt cotton.Advanced biotechnological strategies,such as sterile insect release,RNA interference(RNAi)-mediated gene silencing,stacking Bt with RNAi,and genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR-Cas),offer promising tools for identifying and managing resistance genes in insects.Additionally,CRISPR-mediated gene drives and the development of novel biopesticides present potential avenues for effective pest management in cotton cultivation.These innovative approaches could significantly enhance the sustainability and efficacy of pest resistance management in Bt cotton.