Perovskite solar cells(PSCs)emerge as the most promising photovoltaics(PV)for their high performance and potential convenient cost-effective production routes comparing to the sophomore PV technologies.The printed PSC...Perovskite solar cells(PSCs)emerge as the most promising photovoltaics(PV)for their high performance and potential convenient cost-effective production routes comparing to the sophomore PV technologies.The printed PSCs with simplified device architecture and fabrication procedures could further enhance the competitive strength of PSC technology.In this work,we present an in-situ defect passivation(ISDP)assisted full-printing of high performance formamidine-lead bromide(FAPbBr_(3))PSCs.Only three rapid printing steps are involved for electron transporting layer(ETL),perovskite and carbon to form a complete solar cell on the low-cost fluorine-doped tin oxide(FTO)substrate.Long-chain polymer monomethyl ether polyethylene glycol is particularly utilized as the ISDP passivator,leading to conformal coating on the rough FTO and defect passivation for both ETL and perovskite during printing.A high efficiency of 10.85%(certified 10.14%)and a high V_(oc)up to 1.57 V are achieved for the printed device.The unencapsulated PSCs maintain above 90%of the initial efficiency after continuously heating at 85℃for 1000 h and over 80%of the efficiency after the maximum power point tracking for 3500 h.The fully printed semitransparent PSCs with carbon grids(CGs)show average visible light transmittance over 33%and an efficiency of 8.81%.展开更多
This study quantified the effect of weeding frequency and weeding schedules on weeding operation time in a sugi(Cryptomeria japonica)plantation stand.A weeding operation time estimation model was developed;then the cu...This study quantified the effect of weeding frequency and weeding schedules on weeding operation time in a sugi(Cryptomeria japonica)plantation stand.A weeding operation time estimation model was developed;then the cumulative weeding operation time after six growing seasons was simulated using the developed model.The developed model included weed height,relative height of weeds to sugi,and initial planting density.The simulated cumulative weeding operation time decreased approximately 6%for each one-treatment decrease in weeding frequency.Under a three-treatment weeding frequency scenario,the simulated cumulative operation time when weeding was conducted during non-consecutive years was longer than that when weeding was conducted during three consecutive years.The results suggest that carrying out weeding treatment during consecutive years is the more effective for reduction of weeding costs.We conclude that weeding schedule as well as weeding frequency must be considered for reduction of weeding operation time.展开更多
基金financially supported by the Guangdong Pearl River Talent Program (2021ZT09L400)National Natural Science Foundation of China (52072284, 21875178, 91963209)the Joint Funds of Natural Science Foundation of Hubei Province (2022CFD087)
文摘Perovskite solar cells(PSCs)emerge as the most promising photovoltaics(PV)for their high performance and potential convenient cost-effective production routes comparing to the sophomore PV technologies.The printed PSCs with simplified device architecture and fabrication procedures could further enhance the competitive strength of PSC technology.In this work,we present an in-situ defect passivation(ISDP)assisted full-printing of high performance formamidine-lead bromide(FAPbBr_(3))PSCs.Only three rapid printing steps are involved for electron transporting layer(ETL),perovskite and carbon to form a complete solar cell on the low-cost fluorine-doped tin oxide(FTO)substrate.Long-chain polymer monomethyl ether polyethylene glycol is particularly utilized as the ISDP passivator,leading to conformal coating on the rough FTO and defect passivation for both ETL and perovskite during printing.A high efficiency of 10.85%(certified 10.14%)and a high V_(oc)up to 1.57 V are achieved for the printed device.The unencapsulated PSCs maintain above 90%of the initial efficiency after continuously heating at 85℃for 1000 h and over 80%of the efficiency after the maximum power point tracking for 3500 h.The fully printed semitransparent PSCs with carbon grids(CGs)show average visible light transmittance over 33%and an efficiency of 8.81%.
文摘This study quantified the effect of weeding frequency and weeding schedules on weeding operation time in a sugi(Cryptomeria japonica)plantation stand.A weeding operation time estimation model was developed;then the cumulative weeding operation time after six growing seasons was simulated using the developed model.The developed model included weed height,relative height of weeds to sugi,and initial planting density.The simulated cumulative weeding operation time decreased approximately 6%for each one-treatment decrease in weeding frequency.Under a three-treatment weeding frequency scenario,the simulated cumulative operation time when weeding was conducted during non-consecutive years was longer than that when weeding was conducted during three consecutive years.The results suggest that carrying out weeding treatment during consecutive years is the more effective for reduction of weeding costs.We conclude that weeding schedule as well as weeding frequency must be considered for reduction of weeding operation time.