In South China four depositional sequences are recognized in the upper part of Upper Devonian and Tournaisian. They are named SQ0 SQ1, SQ2 and SQ3 in ascending order. SQ0 is Strunian (uppermost Devonian), and the othe...In South China four depositional sequences are recognized in the upper part of Upper Devonian and Tournaisian. They are named SQ0 SQ1, SQ2 and SQ3 in ascending order. SQ0 is Strunian (uppermost Devonian), and the other three Tournaisian in age. These four depositional sequences appear to correlate fairly well with the four sequence recognized in Europe, North America and other areas. This may suggest that these sequences are synchronous depos- its resulted from the eustatic changes. The present study on sequence stratigraphy, biostratigraphy and event stratigraphy indicates that in neritic facies areas of South China, the Devonian-Carboniferous boundary, matching the boundary between Siphonodella praesulcata zone and S. sulcata zone in pelagic facies areas, is not only higher than the top of the Cystophrentis zone, but also higher than the top of the Devonian-Carboniferous boundary event bed. In neritic facies areas, the Devonian-Carbonifrerous boundary is marked by the most distinct transgressive surface within the Cystophrentiseudouralina interval zone, i. e. at the base of the TST of the SQ1. This boundary coincides with the top surface of the event bed resulted from the eustatic fall, and approximately corresponds to the basal part of Rseudouralina assemblage zone.展开更多
Detailed studies on Late Devonian to Early Carboniferous carbonate rocks in central Hunan, southern China have led to the recognition of 25 lithofacies which can be grouped into: (I) inner ramp peritidal platform, ...Detailed studies on Late Devonian to Early Carboniferous carbonate rocks in central Hunan, southern China have led to the recognition of 25 lithofacies which can be grouped into: (I) inner ramp peritidal platform, (2) inner ramp organic hank and mound, (3) mid ramp, (4) outer ramp, and (5) shelf basin facies associations. The peritidal platform facies association dominates the Zimenqiao Formation (Namurian A or late Datangian) and is characterized by gypsum and dolostone-containing sequences, indicating a peritidal platform environment. The other four facies associations dominate the Menggongao Formation (late Famennian), Liujiatang Formation (Tournaisian or Yangruanian), Shidengzi Formations (early Visean or early Datangian). Five upward-shallowing cycles were distinguished in these three Formations. The predominant facies associations developed in each Formation demonstrate an overall transgression-regression cycle in the Late Devonian to Early Carboniferous in central Hunan. The overall transgressive sequence was preserved in the Shaodong, Menggongao, and Liujiatang Formations, and the overall regressive sequence was preserved in the Liujiatang, Shidengzi, Ceshui and Zimenqiao Formations.展开更多
The Mobarak Formation is near the town of Kiyasar in the south-east of Sari city, northern Iran. This formation conformably overlies the Geirud Formation (Upper Devonian). The lower part of the Mobarak Formation con...The Mobarak Formation is near the town of Kiyasar in the south-east of Sari city, northern Iran. This formation conformably overlies the Geirud Formation (Upper Devonian). The lower part of the Mobarak Formation consisting of shales and thin- to medium-bedded limestone toward the top of these sequences changes into alternations of dark limestone and interbedded gray to black shales. Weathered yellow thick-bedded shales are observed at the top of the section. This formation is covered unconformably by sandstones attributed to the Dorud Formation (Lower Permian). The thickness of the formation in this region is 250 m. Four rock units have been recognized in this section. Foraminiferai biostratigraphy shows that the age of the Mobarak Formation in the Kiaysar region ranges from Lower Tournaisian to Early Middle Visean. The foraminifer Zones FAZ1 and FAZ2 are correlated with the Lower Tournaisian and Upper Tournaisian, whereas Zones FAZ3 and FAZ4 correlate with the Visean. Affinities exist between specimens recorded in the Kiyasar section with species known from other regions in eastern and Central Alborz, but there are important differences in their appearance.展开更多
Geochronological and geochemical analyses were performed on K-feldspar granites and monzonitic granites from the Xilinhot area, Inner Mongolia, China. Zircon U/Pb ages indicate that the two types granites were emplace...Geochronological and geochemical analyses were performed on K-feldspar granites and monzonitic granites from the Xilinhot area, Inner Mongolia, China. Zircon U/Pb ages indicate that the two types granites were emplaced during the Lower Carboniferous. The K-feldspar granites (332 Ma) have the typical A-type granite characteristics of a post-collision setting. The monzonitic granites have an emplacement age of 323 Ma. Zircon tHf values of the former range from +12.8 to +14.2, with an av- erage TDM2 of 453 Ma. The latter have lower zircon ~Hf values, ranging from +5.4 to +10.7, with an av- erage TDM2 of 798 Ma. The strong, positive ~nf values of the zircon indicate that both sets of samples are from a juvenile crust formed in an oceanic crust subduction stage, although the monzonitic granite may have undergone a hybridization of crustal materials. These results indicate a younger post orogenic event. The Paleo-Asian Ocean had closed before the Early Carboniferous and the Xilinhot area started its post-orogenic evolution with an extensional tectonic environment durin~ the Early Carboniferous.展开更多
The Huadu flora of Guangdong Province, South China contains the lepidodendrid Lepidodendron shanyangense Wu et He, its putative rhizophore Stigmaria cf. ficoides (Brongniart) Sternberg; sphenophyte s.l. Archaeocalam...The Huadu flora of Guangdong Province, South China contains the lepidodendrid Lepidodendron shanyangense Wu et He, its putative rhizophore Stigmaria cf. ficoides (Brongniart) Sternberg; sphenophyte s.l. Archaeocalamites scrobiculatus (Brongniart) Stur; bowmanitid Sphenophyllum tenerrimum (Ettingshausen) Stur; pteridophyll Sphenopteris sp. of uncertain taxonomic position; undetermined ferns gen. et sp. nov.; lyginopterid pteridosperm Rhodeopteridium hsianghsiangense (Sze) Zhang, Zhao et Wu, a trigonocarpoid pteridosperm represented by fronds and isolated pinnules of Paripteris gigantea (Sternberg) Gothan, male fructifications of Potoniea sp., and seeds of Trigonocarpus sp. Ecologically, the Early Carboniferous (Visean) Huadu vegetation was divided into two neighboring communities: (1) a near-shore hydrophilous "community A" with predominating Archaeocalamites and Rhodeopteridium; and (2) a wet forest "community B" with predominating shrubby trigonocarpalean pteridosperm Paripteris gigantea (Sternberg) Gothan and tall tree-like lepidodendrid Lepidodendron shanyangense Wu et He. The Huadu vegetation was physiognomically similar to present-day low-latitude mangrove forest.展开更多
The crustal basement of Northwest Germany can be interpreted as an “Avalonian Terrane Assemblage” subdivided by a roughly NW-SE (Hercynian) and SW-NE (Rhenish) running horst and graben system. In Late Devonian and E...The crustal basement of Northwest Germany can be interpreted as an “Avalonian Terrane Assemblage” subdivided by a roughly NW-SE (Hercynian) and SW-NE (Rhenish) running horst and graben system. In Late Devonian and Early Carboniferous times, this assemblage was flooded by the sea and mainly marine carbonates were deposited on the horsts and Stillwater shales in the grabens, as interpretable through magnetotelluric measurements. Dur</span><span style="font-family:Verdana;">ing the Late Carboniferous Variscan Orogeny, this terrain became the </span><span style="font-family:Verdana;">coal-rich </span><span style="font-family:Verdana;">foreland of the colliding Rhenohercynian belt. The shale-filled grabens </span><span style="font-family:Verdana;">reacted </span><span style="font-family:Verdana;">through folding and thrusting with different anticlinal patterns, the main</span><span style="font-family:Verdana;"> carbonate covered horst in a still unknown way. This horst was the location of the Late Carboniferous basin center and of the inverted oil-rich Mesozoic Lower Saxony Basin (southwestern sector), respectively, with the so-called Bramsche Massif therein. It probably acted as an indenter for the evolution of the Variscan ore-rich Harz Mountains and forced the approaching Rhenohercynian orogen to stack the appropriate tectonic nappes by horizontal shortening to very high altitudes and the root into large depths. Based on seismic evidence this root is still an uncompleted crust/mantle transition zone with a deep reflection seismic and petrological Moho and a shallower hardly reflecting refraction seismic velocity Moho. The alternative, partly unsolved location of the Variscan Deformation Front in Northwest Germany may represent the new findings. The results may be supported by a comparison with features of the northern Alpine deformation belt.展开更多
Deposits of Lower Carboniferous rocks in Kalmard block are recognized by Gachal informal formation, showing various characteristics in different outcrops. Lower Carboniferous deposits (Gachal formation) are composed c...Deposits of Lower Carboniferous rocks in Kalmard block are recognized by Gachal informal formation, showing various characteristics in different outcrops. Lower Carboniferous deposits (Gachal formation) are composed chiefly of carbonate, evaporite and siliciclastic rocks. This formation is composed of 198 m sandstone, limestone and dolomite as well as a small amount of shale, marl and gypsum in the Madbeiki section. This formation unconformably underlies Precambrian metamorphic deposits (Kalmard formation) while lateritic soils of lower Permian (Chili formation) are depicted overlying an erosional unconformity above this formation. According to lithologic and microscopic investigations, the deposits of Gachal formation can be divided into 1 siliciclastic petrofacies, 1 evaporite microfacies and 16 carbonate microfacies. Field observations, along with microscopic examinations, have resulted in identifying tidal flat, lagoon, shoal and open marine environments in the rocks of the studied formation. Vertical changes of microfacies and depth variation curve indicate the high thickness of the microfacies of tidal flat, lagoon and shoal environments and low thickness of the microfacies of open marine environment. The carbonate-evaporite-siliciclastic sequence of Gachal formation is made up of three third-order depositional sequence, separated each other by type 1 sequence boundary (SB1). Siliciclastic and evaporite deposits include LST system tract, and carbonate microfacies involve TST and HST system tracts, separated from each other by MFS. Gachal formation rocks in Madbeiki section are deposited in a low-angle homoclinal ramp, mostly in the inner ramp, located in the southern Paleotethys Ocean. The depositional sequence identified in Gachal formation points to the age of Lower Carboniferous, conforming to upper Kaskaskia super sequence. The upper erosional boundary between Gachal and Chili formations conform to the global-scale sea level fall.展开更多
文摘In South China four depositional sequences are recognized in the upper part of Upper Devonian and Tournaisian. They are named SQ0 SQ1, SQ2 and SQ3 in ascending order. SQ0 is Strunian (uppermost Devonian), and the other three Tournaisian in age. These four depositional sequences appear to correlate fairly well with the four sequence recognized in Europe, North America and other areas. This may suggest that these sequences are synchronous depos- its resulted from the eustatic changes. The present study on sequence stratigraphy, biostratigraphy and event stratigraphy indicates that in neritic facies areas of South China, the Devonian-Carboniferous boundary, matching the boundary between Siphonodella praesulcata zone and S. sulcata zone in pelagic facies areas, is not only higher than the top of the Cystophrentis zone, but also higher than the top of the Devonian-Carboniferous boundary event bed. In neritic facies areas, the Devonian-Carbonifrerous boundary is marked by the most distinct transgressive surface within the Cystophrentiseudouralina interval zone, i. e. at the base of the TST of the SQ1. This boundary coincides with the top surface of the event bed resulted from the eustatic fall, and approximately corresponds to the basal part of Rseudouralina assemblage zone.
基金supported by the National Natural Science Foundation of China(No.41030213)the Major National S&T Program of China(2011ZX05009-002)
文摘Detailed studies on Late Devonian to Early Carboniferous carbonate rocks in central Hunan, southern China have led to the recognition of 25 lithofacies which can be grouped into: (I) inner ramp peritidal platform, (2) inner ramp organic hank and mound, (3) mid ramp, (4) outer ramp, and (5) shelf basin facies associations. The peritidal platform facies association dominates the Zimenqiao Formation (Namurian A or late Datangian) and is characterized by gypsum and dolostone-containing sequences, indicating a peritidal platform environment. The other four facies associations dominate the Menggongao Formation (late Famennian), Liujiatang Formation (Tournaisian or Yangruanian), Shidengzi Formations (early Visean or early Datangian). Five upward-shallowing cycles were distinguished in these three Formations. The predominant facies associations developed in each Formation demonstrate an overall transgression-regression cycle in the Late Devonian to Early Carboniferous in central Hunan. The overall transgressive sequence was preserved in the Shaodong, Menggongao, and Liujiatang Formations, and the overall regressive sequence was preserved in the Liujiatang, Shidengzi, Ceshui and Zimenqiao Formations.
文摘The Mobarak Formation is near the town of Kiyasar in the south-east of Sari city, northern Iran. This formation conformably overlies the Geirud Formation (Upper Devonian). The lower part of the Mobarak Formation consisting of shales and thin- to medium-bedded limestone toward the top of these sequences changes into alternations of dark limestone and interbedded gray to black shales. Weathered yellow thick-bedded shales are observed at the top of the section. This formation is covered unconformably by sandstones attributed to the Dorud Formation (Lower Permian). The thickness of the formation in this region is 250 m. Four rock units have been recognized in this section. Foraminiferai biostratigraphy shows that the age of the Mobarak Formation in the Kiaysar region ranges from Lower Tournaisian to Early Middle Visean. The foraminifer Zones FAZ1 and FAZ2 are correlated with the Lower Tournaisian and Upper Tournaisian, whereas Zones FAZ3 and FAZ4 correlate with the Visean. Affinities exist between specimens recorded in the Kiyasar section with species known from other regions in eastern and Central Alborz, but there are important differences in their appearance.
基金supported by the China Geological Survey (Nos. 1212010510507, 1212010811005, 1212011220448)the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan (No. CUGL150816)
文摘Geochronological and geochemical analyses were performed on K-feldspar granites and monzonitic granites from the Xilinhot area, Inner Mongolia, China. Zircon U/Pb ages indicate that the two types granites were emplaced during the Lower Carboniferous. The K-feldspar granites (332 Ma) have the typical A-type granite characteristics of a post-collision setting. The monzonitic granites have an emplacement age of 323 Ma. Zircon tHf values of the former range from +12.8 to +14.2, with an av- erage TDM2 of 453 Ma. The latter have lower zircon ~Hf values, ranging from +5.4 to +10.7, with an av- erage TDM2 of 798 Ma. The strong, positive ~nf values of the zircon indicate that both sets of samples are from a juvenile crust formed in an oceanic crust subduction stage, although the monzonitic granite may have undergone a hybridization of crustal materials. These results indicate a younger post orogenic event. The Paleo-Asian Ocean had closed before the Early Carboniferous and the Xilinhot area started its post-orogenic evolution with an extensional tectonic environment durin~ the Early Carboniferous.
基金supported by the National Basic Research Program of China(973 Program)(No. 2012CB822003)the National Natural Science Foundation of China(No.41210001)+2 种基金the subsidy of the Russian Government to support the Program of Competitive Growth of Kazan Federal University among World's Leading Academic Centresthe Fundamental Research Funds for the Central Universities(No.121gjc04)the Key project of Sun Yat-sen University for inviting foreign teachers
文摘The Huadu flora of Guangdong Province, South China contains the lepidodendrid Lepidodendron shanyangense Wu et He, its putative rhizophore Stigmaria cf. ficoides (Brongniart) Sternberg; sphenophyte s.l. Archaeocalamites scrobiculatus (Brongniart) Stur; bowmanitid Sphenophyllum tenerrimum (Ettingshausen) Stur; pteridophyll Sphenopteris sp. of uncertain taxonomic position; undetermined ferns gen. et sp. nov.; lyginopterid pteridosperm Rhodeopteridium hsianghsiangense (Sze) Zhang, Zhao et Wu, a trigonocarpoid pteridosperm represented by fronds and isolated pinnules of Paripteris gigantea (Sternberg) Gothan, male fructifications of Potoniea sp., and seeds of Trigonocarpus sp. Ecologically, the Early Carboniferous (Visean) Huadu vegetation was divided into two neighboring communities: (1) a near-shore hydrophilous "community A" with predominating Archaeocalamites and Rhodeopteridium; and (2) a wet forest "community B" with predominating shrubby trigonocarpalean pteridosperm Paripteris gigantea (Sternberg) Gothan and tall tree-like lepidodendrid Lepidodendron shanyangense Wu et He. The Huadu vegetation was physiognomically similar to present-day low-latitude mangrove forest.
文摘The crustal basement of Northwest Germany can be interpreted as an “Avalonian Terrane Assemblage” subdivided by a roughly NW-SE (Hercynian) and SW-NE (Rhenish) running horst and graben system. In Late Devonian and Early Carboniferous times, this assemblage was flooded by the sea and mainly marine carbonates were deposited on the horsts and Stillwater shales in the grabens, as interpretable through magnetotelluric measurements. Dur</span><span style="font-family:Verdana;">ing the Late Carboniferous Variscan Orogeny, this terrain became the </span><span style="font-family:Verdana;">coal-rich </span><span style="font-family:Verdana;">foreland of the colliding Rhenohercynian belt. The shale-filled grabens </span><span style="font-family:Verdana;">reacted </span><span style="font-family:Verdana;">through folding and thrusting with different anticlinal patterns, the main</span><span style="font-family:Verdana;"> carbonate covered horst in a still unknown way. This horst was the location of the Late Carboniferous basin center and of the inverted oil-rich Mesozoic Lower Saxony Basin (southwestern sector), respectively, with the so-called Bramsche Massif therein. It probably acted as an indenter for the evolution of the Variscan ore-rich Harz Mountains and forced the approaching Rhenohercynian orogen to stack the appropriate tectonic nappes by horizontal shortening to very high altitudes and the root into large depths. Based on seismic evidence this root is still an uncompleted crust/mantle transition zone with a deep reflection seismic and petrological Moho and a shallower hardly reflecting refraction seismic velocity Moho. The alternative, partly unsolved location of the Variscan Deformation Front in Northwest Germany may represent the new findings. The results may be supported by a comparison with features of the northern Alpine deformation belt.
文摘Deposits of Lower Carboniferous rocks in Kalmard block are recognized by Gachal informal formation, showing various characteristics in different outcrops. Lower Carboniferous deposits (Gachal formation) are composed chiefly of carbonate, evaporite and siliciclastic rocks. This formation is composed of 198 m sandstone, limestone and dolomite as well as a small amount of shale, marl and gypsum in the Madbeiki section. This formation unconformably underlies Precambrian metamorphic deposits (Kalmard formation) while lateritic soils of lower Permian (Chili formation) are depicted overlying an erosional unconformity above this formation. According to lithologic and microscopic investigations, the deposits of Gachal formation can be divided into 1 siliciclastic petrofacies, 1 evaporite microfacies and 16 carbonate microfacies. Field observations, along with microscopic examinations, have resulted in identifying tidal flat, lagoon, shoal and open marine environments in the rocks of the studied formation. Vertical changes of microfacies and depth variation curve indicate the high thickness of the microfacies of tidal flat, lagoon and shoal environments and low thickness of the microfacies of open marine environment. The carbonate-evaporite-siliciclastic sequence of Gachal formation is made up of three third-order depositional sequence, separated each other by type 1 sequence boundary (SB1). Siliciclastic and evaporite deposits include LST system tract, and carbonate microfacies involve TST and HST system tracts, separated from each other by MFS. Gachal formation rocks in Madbeiki section are deposited in a low-angle homoclinal ramp, mostly in the inner ramp, located in the southern Paleotethys Ocean. The depositional sequence identified in Gachal formation points to the age of Lower Carboniferous, conforming to upper Kaskaskia super sequence. The upper erosional boundary between Gachal and Chili formations conform to the global-scale sea level fall.