The Lower Mekong River basin (LMB) covers the lower part of the Mekong river basin, including Laos, Thailand, Cambodia and Vietnam. Due to numerous pressures from high population growth and intensive hydropower develo...The Lower Mekong River basin (LMB) covers the lower part of the Mekong river basin, including Laos, Thailand, Cambodia and Vietnam. Due to numerous pressures from high population growth and intensive hydropower development, the LMB has been facing significant challenges concerning its biodiversity and ecosystem. In 2017, Mekong River Commission (MRC), an intergovernmental organisation founded in 1995 among LMB countries, established the Council Study, which analysed the impacts of water development scenarios concerning the environmental, socioeconomic aspects of the LMB. This paper explores the nature of risks to the LMB water development and subsequently evaluates LMB’s water development scenarios described in the Council Study by using a multi-criteria decision analysis (MCDA) method. MCDA method has been widely applied in the field of water resource management in order to assist the decision-making process by systematically evaluating a certain number of alternatives against well-selected criteria through a preference rating scheme. By implementing a risk-based comprehensive assessment of the LMB transboundary water, this study provides insights into the impacts of the increasing risks to the ecosystem and human beings on the water development of the basin over time, which assists to change the awareness and the perspective toward humans’ risks and transboundary river ecosystem of decision-makers. This paper provides valuable recommendations for MRC to improve their policy concerning benefit-sharing scheme, water planning and risk mitigation strategies.展开更多
Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall station...Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall stations are sparse and unevenly distributed, and the transboundary characteristic makes the collection of precipitation data more difficult, which has restricted hydrological processes simulation. In this study, daily precipitation data from four datasets(gauge observations, inverse distance weighted(IDW) data, Tropical Rainfall Measuring Mission(TRMM) estimates, and Climate Hazards Group InfraRed Precipitation with Stations(CHIRPS) estimates), were applied to drive the Soil and Water Assessment Tool(SWAT) model, and then their capability for hydrological simulation in the Lower Lancang-Mekong River Basin were examined. TRMM and CHIRPS data showed good performances on precipitation estimation in the Lower Lancang-Mekong River Basin, with the better performance for TRMM product. The Nash-Sutcliffe efficiency(NSE) values of gauge, IDW, TRMM, and CHIRPS simulations during the calibration period were 0.87, 0.86, 0.95, and 0.93 for monthly flow, respectively, and those for daily flow were 0.75, 0.77, 0.86, and 0.84, respectively. TRMM and CHIRPS data were superior to rain gauge and IDW data for driving the hydrological model, and TRMM data produced the best simulation performance. Satellite-based precipitation estimates could be suitable data sources when simulating hydrological processes for large data-poor or ungauged watersheds, especially in international river basins for which precipitation observations are difficult to collect. CHIRPS data provide long precipitation time series from 1981 to near present and thus could be used as an alternative precipitation input for hydrological simulation, especially for the period without TRMM data. For satellite-based precipitation products, the differences in the occurrence frequencies and amounts of precipitation with different intensities would affect simulation results of water balance components, which should be comprehensively considered in water resources estimation and planning.展开更多
Mekong River is one of the major international freshwater sources in the world. The Lower Mekong Basin (LMB) comprised of four downstream countries, including Thailand, Lao PDR, Cambodia, and Vietnam. The utilization ...Mekong River is one of the major international freshwater sources in the world. The Lower Mekong Basin (LMB) comprised of four downstream countries, including Thailand, Lao PDR, Cambodia, and Vietnam. The utilization of the basin’s water brings not only substantial benefits to the region ranging from hydropower to navigation, but also negative impacts caused by the unbalanced water using. The essential role of Mekong River requires all member nations to cooperate effectively for the sustainable development of the region. One of the most popular methods in the field of water resource management is a trustable tool called the Analytical Hierarchy Process (AHP). AHP is much appropriate for water resource policymaking. The literature, however, points out that there is no study to both structure the water using hierarchy and employ quantitative (objective) criteria to the AHP model in LMB case. With regard to water resource management, there are no previous studies applying AHP models to evaluating sustainable development of transboundary water resource in LMB case. This paper explores the evolution of water cooperation among Mekong countries and subsequently evaluates the water development scenarios in the LMB based on the water cooperation preferences of four LMB countries This study proposes a novel approach to analyzing, assessing water resource development scenarios characterized by sustainability indicators and to assisting in developing a suitable water policy in LMB according to the best cooperation scenario.展开更多
Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data...Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data are poorly gauged or ungauged. Since suspended sediment load (SSL) is predominant, the objectives of this research are to: 1) simulate monthly average SSL (SSLm) of four catchments using artificial neural network (ANN);2) assess the application of the calibrated ANN (Cal-ANN) models in three ungauged catchment representatives (UCR) before using them to predict SSLm of three actual ungauged catchments (AUC) in the Tonle Sap River Basin;and 3) estimate annual SSL (SSLA) of each AUC for the case of with and without dam-reservoirs. The model performance for total load (SSLT) prediction was also investigated because it is important for dam-reservoir management. For model simulation, ANN yielded very satisfactory results with determination coefficient (R2) ranging from 0.81 to 0.94 in calibration stage and 0.63 to 0.87 in validation stage. The Cal-ANN models also performed well in UCRs with R2 ranging from 0.59 to 0.64. From the result of this study, one can estimate SSLm and SSLT of ungauged catchments with an accuracy of 0.61 in term of R2 and 34.06% in term of absolute percentage bias, respectively. SSLA of the AUCs was found between 159,281 and 723,580 t/year. In combination with Brune’s method, the impact of dam-reservoirs could reduce SSLA between 47% and 68%. This result is key information for sustainable development of such infrastructures.展开更多
Changes in the sediment load of a river can have important impacts on river channel evolution,nutrient fluxes,aquatic ecology and delta erosion and sedimentation,and the possibility of changes in the sediment load of ...Changes in the sediment load of a river can have important impacts on river channel evolution,nutrient fluxes,aquatic ecology and delta erosion and sedimentation,and the possibility of changes in the sediment load of the Lancang-Mekong River has attracted increasing concern in recent years.Existing studies present conflicting findings regarding the nature and magnitude of recent changes in the sediment load of the Lancang-Meking River and the authors have attempted to assemble the most reliable data on annual sediment loads for the period 1965-2003,to assess recent trends in the sediment load of the river.The changes in annual sediment load at 7 stations on the river are analyzed.Important sediment contributing areas are found in the reaches between Gajiu and Yunjinghong,Chiang Saen and Luang Prabang and downstream of Nong Khai.The sediment load increased at Gajiu,Yunjinghong and Chiang Saen over the period 1985-1992 because of serious soil erosion caused by the expansion of cultivation,the replacement of natural forest by plantations and land disturbance associated with hydropower dam construction.A marked reduction in sediment load occurred at Gajiu after the impoundment of the Manwan Hydropower dam on the Lancang River,but this reduction was not evident downstream at Yunjinghong and the stations further downstream.Significant increases in sediment load appeared at Mukdahan and Khong Chiam.These contrasting patterns of change reflect the influence of sediment contributions from the intervening catchment areas and channel systems as well as storage and remobilization of sediment from the channel system and the impact of hydraulic works such as irrigation systems.The long term mean annual sediment load of the Mekong River at its mouth is estimated to be ca.145×106ta-1,which is lower than previously reported values and it seems likely that this will be reduced in the foreseeable future.展开更多
文摘The Lower Mekong River basin (LMB) covers the lower part of the Mekong river basin, including Laos, Thailand, Cambodia and Vietnam. Due to numerous pressures from high population growth and intensive hydropower development, the LMB has been facing significant challenges concerning its biodiversity and ecosystem. In 2017, Mekong River Commission (MRC), an intergovernmental organisation founded in 1995 among LMB countries, established the Council Study, which analysed the impacts of water development scenarios concerning the environmental, socioeconomic aspects of the LMB. This paper explores the nature of risks to the LMB water development and subsequently evaluates LMB’s water development scenarios described in the Council Study by using a multi-criteria decision analysis (MCDA) method. MCDA method has been widely applied in the field of water resource management in order to assist the decision-making process by systematically evaluating a certain number of alternatives against well-selected criteria through a preference rating scheme. By implementing a risk-based comprehensive assessment of the LMB transboundary water, this study provides insights into the impacts of the increasing risks to the ecosystem and human beings on the water development of the basin over time, which assists to change the awareness and the perspective toward humans’ risks and transboundary river ecosystem of decision-makers. This paper provides valuable recommendations for MRC to improve their policy concerning benefit-sharing scheme, water planning and risk mitigation strategies.
基金National Key R&D Program of China(No.2016YFA0601601)National Natural Science Foundation of China(No.41601026,41661099)Science and Technology Planning Project of Yunnan Province,China(No.2017FB073)
文摘Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall stations are sparse and unevenly distributed, and the transboundary characteristic makes the collection of precipitation data more difficult, which has restricted hydrological processes simulation. In this study, daily precipitation data from four datasets(gauge observations, inverse distance weighted(IDW) data, Tropical Rainfall Measuring Mission(TRMM) estimates, and Climate Hazards Group InfraRed Precipitation with Stations(CHIRPS) estimates), were applied to drive the Soil and Water Assessment Tool(SWAT) model, and then their capability for hydrological simulation in the Lower Lancang-Mekong River Basin were examined. TRMM and CHIRPS data showed good performances on precipitation estimation in the Lower Lancang-Mekong River Basin, with the better performance for TRMM product. The Nash-Sutcliffe efficiency(NSE) values of gauge, IDW, TRMM, and CHIRPS simulations during the calibration period were 0.87, 0.86, 0.95, and 0.93 for monthly flow, respectively, and those for daily flow were 0.75, 0.77, 0.86, and 0.84, respectively. TRMM and CHIRPS data were superior to rain gauge and IDW data for driving the hydrological model, and TRMM data produced the best simulation performance. Satellite-based precipitation estimates could be suitable data sources when simulating hydrological processes for large data-poor or ungauged watersheds, especially in international river basins for which precipitation observations are difficult to collect. CHIRPS data provide long precipitation time series from 1981 to near present and thus could be used as an alternative precipitation input for hydrological simulation, especially for the period without TRMM data. For satellite-based precipitation products, the differences in the occurrence frequencies and amounts of precipitation with different intensities would affect simulation results of water balance components, which should be comprehensively considered in water resources estimation and planning.
文摘Mekong River is one of the major international freshwater sources in the world. The Lower Mekong Basin (LMB) comprised of four downstream countries, including Thailand, Lao PDR, Cambodia, and Vietnam. The utilization of the basin’s water brings not only substantial benefits to the region ranging from hydropower to navigation, but also negative impacts caused by the unbalanced water using. The essential role of Mekong River requires all member nations to cooperate effectively for the sustainable development of the region. One of the most popular methods in the field of water resource management is a trustable tool called the Analytical Hierarchy Process (AHP). AHP is much appropriate for water resource policymaking. The literature, however, points out that there is no study to both structure the water using hierarchy and employ quantitative (objective) criteria to the AHP model in LMB case. With regard to water resource management, there are no previous studies applying AHP models to evaluating sustainable development of transboundary water resource in LMB case. This paper explores the evolution of water cooperation among Mekong countries and subsequently evaluates the water development scenarios in the LMB based on the water cooperation preferences of four LMB countries This study proposes a novel approach to analyzing, assessing water resource development scenarios characterized by sustainability indicators and to assisting in developing a suitable water policy in LMB according to the best cooperation scenario.
文摘Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data are poorly gauged or ungauged. Since suspended sediment load (SSL) is predominant, the objectives of this research are to: 1) simulate monthly average SSL (SSLm) of four catchments using artificial neural network (ANN);2) assess the application of the calibrated ANN (Cal-ANN) models in three ungauged catchment representatives (UCR) before using them to predict SSLm of three actual ungauged catchments (AUC) in the Tonle Sap River Basin;and 3) estimate annual SSL (SSLA) of each AUC for the case of with and without dam-reservoirs. The model performance for total load (SSLT) prediction was also investigated because it is important for dam-reservoir management. For model simulation, ANN yielded very satisfactory results with determination coefficient (R2) ranging from 0.81 to 0.94 in calibration stage and 0.63 to 0.87 in validation stage. The Cal-ANN models also performed well in UCRs with R2 ranging from 0.59 to 0.64. From the result of this study, one can estimate SSLm and SSLT of ungauged catchments with an accuracy of 0.61 in term of R2 and 34.06% in term of absolute percentage bias, respectively. SSLA of the AUCs was found between 159,281 and 723,580 t/year. In combination with Brune’s method, the impact of dam-reservoirs could reduce SSLA between 47% and 68%. This result is key information for sustainable development of such infrastructures.
基金supported by the China Institute of Water Resources and Hydropower Research (Grant No. Shaji-1230)the 12th Five-Year National Science and Technology Support Program of China (Grant No.2012BAB02B01)the University of Exeter and the University of New Brunswick (Canada Research Chairs Program)
文摘Changes in the sediment load of a river can have important impacts on river channel evolution,nutrient fluxes,aquatic ecology and delta erosion and sedimentation,and the possibility of changes in the sediment load of the Lancang-Mekong River has attracted increasing concern in recent years.Existing studies present conflicting findings regarding the nature and magnitude of recent changes in the sediment load of the Lancang-Meking River and the authors have attempted to assemble the most reliable data on annual sediment loads for the period 1965-2003,to assess recent trends in the sediment load of the river.The changes in annual sediment load at 7 stations on the river are analyzed.Important sediment contributing areas are found in the reaches between Gajiu and Yunjinghong,Chiang Saen and Luang Prabang and downstream of Nong Khai.The sediment load increased at Gajiu,Yunjinghong and Chiang Saen over the period 1985-1992 because of serious soil erosion caused by the expansion of cultivation,the replacement of natural forest by plantations and land disturbance associated with hydropower dam construction.A marked reduction in sediment load occurred at Gajiu after the impoundment of the Manwan Hydropower dam on the Lancang River,but this reduction was not evident downstream at Yunjinghong and the stations further downstream.Significant increases in sediment load appeared at Mukdahan and Khong Chiam.These contrasting patterns of change reflect the influence of sediment contributions from the intervening catchment areas and channel systems as well as storage and remobilization of sediment from the channel system and the impact of hydraulic works such as irrigation systems.The long term mean annual sediment load of the Mekong River at its mouth is estimated to be ca.145×106ta-1,which is lower than previously reported values and it seems likely that this will be reduced in the foreseeable future.